Anderson Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes. Journal of Visual Communication and Image Representation, 2015, 29, 16-32.	1.7	178
2	Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances, 2015, 33, 372-393.	6.0	176
3	Vision of the unseen. ACM Computing Surveys, 2011, 43, 1-42.	16.1	173
4	A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry - A European Journal, 2017, 23, 12040-12063.	1.7	171
5	Authorship Attribution for Social Media Forensics. IEEE Transactions on Information Forensics and Security, 2017, 12, 5-33.	4.5	158
6	Video pornography detection through deep learning techniques and motion information. Neurocomputing, 2017, 230, 279-293.	3.5	104
7	Continuous Flow Synthesis of α-Halo Ketones: Essential Building Blocks of Antiretroviral Agents. Journal of Organic Chemistry, 2014, 79, 1555-1562.	1.7	92
8	Illuminant-Based Transformed Spaces for Image Forensics. IEEE Transactions on Information Forensics and Security, 2016, 11, 720-733.	4.5	75
9	Towards a continuous flow environment for lipase-catalyzed reactions. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 1-9.	1.8	66
10	Expanding the toolbox of asymmetric organocatalysis by continuous-flow process. Chemical Communications, 2015, 51, 3708-3722.	2.2	66
11	Image Phylogeny by Minimal Spanning Trees. IEEE Transactions on Information Forensics and Security, 2012, 7, 774-788.	4.5	63
12	Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry, 2014, 16, 2386.	4.6	62
13	A three step continuous flow synthesis of the biaryl unit of the HIV protease inhibitorAtazanavir. Organic and Biomolecular Chemistry, 2013, 11, 6806-6813.	1.5	56
14	Laser printer attribution: Exploring new features and beyond. Forensic Science International, 2015, 247, 105-125.	1.3	52
15	Synthetic Strategies toward SGLT2 Inhibitors. Organic Process Research and Development, 2018, 22, 467-488.	1.3	52
16	Leveraging deep neural networks to fight child pornography in the age of social media. Journal of Visual Communication and Image Representation, 2018, 50, 303-313.	1.7	49
17	Data-Driven Feature Characterization Techniques for Laser Printer Attribution. IEEE Transactions on Information Forensics and Security, 2017, 12, 1860-1873.	4.5	45
18	Antimycobacterial and Anti-Inflammatory Activities of Substituted Chalcones Focusing on an Anti-Tuberculosis Dual Treatment Approach. Molecules, 2015, 20, 8072-8093.	1.7	44

#	Article	IF	CITATIONS
19	Pornography classification: The hidden clues in video space–time. Forensic Science International, 2016, 268, 46-61.	1.3	42
20	Lipase-Catalyzed Monostearin Synthesis under Continuous Flow Conditions. Organic Process Research and Development, 2012, 16, 1098-1101.	1.3	41
21	Functionalization of 2 <i>H</i> -1,2,3-Triazole <i>C</i> -Nucleoside Template via N ² Selective Arylation. Journal of Organic Chemistry, 2016, 81, 4540-4549.	1.7	37
22	Cellulose as an efficient matrix for lipase and transaminase immobilization. RSC Advances, 2016, 6, 6665-6671.	1.7	35
23	Large-Scale Image Phylogeny: Tracing Image Ancestral Relationships. IEEE MultiMedia, 2013, 20, 58-70.	1.5	32
24	Continuous flow valorization of fatty acid waste using silica-immobilized lipases. Green Chemistry, 2013, 15, 518.	4.6	32
25	Consecutive lipase immobilization and glycerol carbonate production under continuous-flow conditions. Catalysis Science and Technology, 2016, 6, 4743-4748.	2.1	31
26	Toward image phylogeny forests: Automatically recovering semantically similar image relationships. Forensic Science International, 2013, 231, 178-189.	1.3	30
27	Identification of Chalcone Derivatives as Inhibitors of Leishmania infantum Arginase and Promising Antileishmanial Agents. Frontiers in Chemistry, 2020, 8, 624678.	1.8	29
28	Process intensification for tertiary amine catalyzed glycerol carbonate production: translating microwave irradiation to a continuous-flow process. RSC Advances, 2015, 5, 20945-20950.	1.7	28
29	Lipase-catalyzed esterification of steric hindered fructose derivative by continuous flow and batch conditions. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 37-42.	1.8	27
30	(±)-cis-(6-Ethyl-tetrahydropyran-2-yl)-formic acid: a novel substance with antinociceptive properties. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1573-1575.	1.0	26
31	Epoxidation of oleic acid catalyzed by PSCI-Amano lipase optimized by experimental design. Journal of Molecular Catalysis B: Enzymatic, 2012, 81, 7-11.	1.8	26
32	Recent Advances in the Morita-Baylis-Hillman Reaction Under Microwave Irradiation. Mini-Reviews in Organic Chemistry, 2010, 7, 212-220.	0.6	24
33	Immobilized lipase screening towards continuous-flow kinetic resolution of (±)-1,2-propanediol. Molecular Catalysis, 2019, 467, 128-134.	1.0	24
34	Ethyl acetate as an acyl donor in the continuous flow kinetic resolution of (±)-1-phenylethylamine catalyzed by lipases. Organic and Biomolecular Chemistry, 2013, 11, 3332.	1.5	23
35	Gasoline from Biomass through Refineryâ€Friendly Carbohydrateâ€Based Bioâ€Oil Produced by Ketalization. ChemSusChem, 2014, 7, 1627-1636.	3.6	23
36	Microwave assisted Suzuki reaction in N-butylpyridinium salts/water systems. Tetrahedron Letters, 2011, 52, 4168-4171.	0.7	22

#	Article	IF	CITATIONS
37	Fatty acids residue from palm oil refining process as feedstock for lipase catalyzed monoacylglicerol production under batch and continuous flow conditions. Journal of Molecular Catalysis B: Enzymatic, 2012, 77, 53-58.	1.8	22
38	Kinetic resolution of a precursor for myo-inositol phosphates under continuous flow conditions. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 139-143.	1.8	22
39	Kinetics and mechanism of lipase catalyzed monoacylglycerols synthesis. Journal of Molecular Catalysis B: Enzymatic, 2013, 96, 34-39.	1.8	22
40	Lipase catalyzed ascorbyl palmitate synthesis under microwave irradiation. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 127-131.	1.8	22
41	Combined batch and continuous flow procedure to the chemo-enzymatic synthesis of biaryl moiety of Odanacatib. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 101-107.	1.8	21
42	Active Pharmaceutical Ingredients for Antiretroviral Treatment in Low- and Middle-Income Countries: A Survey. Antiviral Therapy, 2014, 19, 15-29.	0.6	21
43	Thermal effect on the microwave assisted biodiesel synthesis catalyzed by lipases. Journal of the Brazilian Chemical Society, 2011, 22, 1993-1998.	0.6	19
44	A Comprehensive Study on the Activity and Deactivation of Immobilized Lecitase Ultra in Esterifications of Food Waste Streams to Monoacylglycerols. ChemSusChem, 2013, 6, 872-879.	3.6	19
45	Conformational dissection of Thermomyces lanuginosus lipase in solution. Biophysical Chemistry, 2014, 185, 88-97.	1.5	18
46	Ammonium formate as a green hydrogen source for clean semi-continuous enzymatic dynamic kinetic resolution of (+/â^')-α-methylbenzylamine. RSC Advances, 2014, 4, 13620-13625.	1.7	18
47	Synthesis of C-Ribosyl-1,2,3-triazolyl Carboxamides. Synthesis, 2017, 49, 1993-2002.	1.2	18
48	Lipase immobilization towards improved productivity on kinetic resolutions by a continuous-flow process. RSC Advances, 2015, 5, 102409-102415.	1.7	17
49	Continuousâ€Flow Synthesis of (<i>R</i>)â€Propylene Carbonate: An Important Intermediate in the Synthesis of Tenofovir. European Journal of Organic Chemistry, 2018, 2018, 2931-2938.	1.2	17
50	From Immobilization to Catalyst Use: A Complete Continuousâ€Flow Approach Towards the Use of Immobilized Organocatalysts. ChemCatChem, 2019, 11, 5553-5561.	1.8	17
51	Pd/Nb2O5: efficient supported palladium heterogeneous catalyst in the production of key intermediates for the synthesis of †sartans' via the Suzuki reaction. Tetrahedron Letters, 2012, 53, 1089-1093.	0.7	16
52	Unveiling the Chemical Composition of Sugar Cane Biocrudes by Liquid Chromatography–Tandem Mass Spectrometry. Energy & Fuels, 2015, 29, 8082-8087.	2.5	16
53	Biohydrocarbons Production under Standard Refinery Conditions by means of a Representative Ketal Compound of Biocrude. Energy Technology, 2017, 5, 428-441.	1.8	16
54	A reação de ciclização de prins: uma estratégia eficiente para sÃntese estereosseletiva de anéis tetraidropirânicos substituÃdos. Quimica Nova, 2006, 29, 834-839.	0.3	15

#	Article	IF	CITATIONS
55	Kinetic resolution of 5H-pyrrolo[1,2-a]imidazol-7-ol, 6,7-dihydro under continuous flow conditions: An intermediate for chiral ionic liquids synthesis. Journal of Molecular Catalysis B: Enzymatic, 2013, 91, 77-80.	1.8	15
56	Lipase-catalyzed synthesis of secondary glucose esters under continuous flow conditions. European Journal of Lipid Science and Technology, 2013, 115, 464-467.	1.0	15
57	Continuous flow whole cell bioreduction of fluorinated acetophenone. Tetrahedron, 2014, 70, 3239-3242.	1.0	15
58	Studies on the continuous-flow synthesis of nonpeptidal bis-tetrahydrofuran moiety of Darunavir. Journal of Flow Chemistry, 2015, 5, 216-219.	1.2	15
59	Sporopollenin as an efficient green support for covalent immobilization of a lipase. Catalysis Science and Technology, 2015, 5, 3130-3136.	2.1	15
60	Insights to Achieve a Better Control of Silicon-Aluminum Ratio and ZSM-5 Zeolite Crystal Morphology through the Assistance of Biomass. Catalysts, 2016, 6, 30.	1.6	15
61	Continuous-flow protocol for the synthesis of enantiomerically pure intermediates of anti epilepsy and anti tuberculosis active pharmaceutical ingredients. Organic and Biomolecular Chemistry, 2019, 17, 1552-1557.	1.5	15
62	Biocatalyzed Acetins Production under Continuous-Flow Conditions: Valorization of Glycerol Derived from Biodiesel Industry. Journal of Flow Chemistry, 2013, 3, 41-45.	1.2	13
63	The antinociceptive properties of the novel compound (±)-trans-4-hydroxy-6-propyl-1-oxocyclohexan-2-one in acute pain in mice. Behavioural Pharmacology, 2013, 24, 10-19.	0.8	13
64	Lipase immobilized in microemulsion based organogels (MBGs) as an efficient catalyst for continuous-flow esterification of protected fructose. RSC Advances, 2015, 5, 37287-37291.	1.7	13
65	Antinociceptive action of (±)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice. European Journal of Pharmacology, 2006, 550, 47-53.	1.7	12
66	DoE oriented reaction optimization on the lipase-catalyzed monostearin synthesis. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 313-318.	1.8	12
67	Continuous-Flow Sequential Schotten–Baumann Carbamoylation and Acetate Hydrolysis in the Synthesis of Capecitabine. Organic Process Research and Development, 2019, 23, 2516-2520.	1.3	12
68	Strategies Towards the Synthesis of N2-Substituted 1,2,3-Triazoles. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180751.	0.3	12
69	Process Intensification for Obtaining a Cannabidiol Intermediate by Photo-oxygenation of Limonene under Continuous-Flow Conditions. Organic Process Research and Development, 2020, 24, 2017-2024.	1.3	12
70	TBCA mediated microwave-assisted Hofmann rearrangement. Tetrahedron Letters, 2011, 52, 1639-1640.	0.7	11
71	On the mechanism of the Dakin–West reaction. Organic and Biomolecular Chemistry, 2012, 10, 9013. 	1.5	11
72	Highly enantioselective bioreduction of 4-bromoacetophenone. Tetrahedron: Asymmetry, 2011, 22, 1763-1766.	1.8	10

#	Article	IF	CITATIONS
73	Three-Step Chemo Enzymatic Continuous-Flow Cascade Synthesis of 1-Monoacylglycerol. Journal of Flow Chemistry, 2013, 3, 122-126.	1.2	10
74	4′-Methylbiphenyl-2-carbonitrile synthesis by continuous flow Suzuki–Miyaura reaction. Tetrahedron Letters, 2012, 53, 4166-4168.	0.7	9
75	Microemulsion-Based Organogels as an Efficient Support for Lipase-Catalyzed Reactions under Continuous-Flow Conditions. Organic Process Research and Development, 2014, 18, 1372-1376.	1.3	9
76	The Dakin-West reaction: Past, present and future. Tetrahedron, 2018, 74, 4359-4371.	1.0	9
77	Sugar ketals as a platform molecule to overcome the limitation of converting biomass into green-hydrocarbons in a typical refinery. Sustainable Energy and Fuels, 2020, 4, 1312-1319.	2.5	9
78	Cannabidiol Discovery and Synthesis—a Targetâ€Oriented Analysis in Drug Production Processes. Chemistry - A European Journal, 2021, 27, 5577-5600.	1.7	9
79	Photochemistry under Continuous Flow Conditions. Revista Virtual De Quimica, 2015, 7, .	0.1	8
80	Antinociceptive activity of (â^')-(2S,6S)-(6-ethyl-tetrahydropyran-2-yl)-formic acid on acute pain in mice. Behavioural Pharmacology, 2011, 22, 564-572.	0.8	6
81	Chemoselective RuO4 Oxidation of Phenyl or p-Methoxyphenyl Groups to Carboxylic Acid Functions in the Presence of a Tetrahydropyran Ring. Synthesis, 2004, 2004, 1767-1770.	1.2	5
82	Use of <i>Kappaphycus alvarezii</i> Biomass for the Production of Carbohydrate Isopropylidene-Ketal-Based Biocrude. Energy & Fuels, 2017, 31, 9422-9428.	2.5	5
83	Development of a Lâ€Tryptophanâ€Based Ligand for Regioselective Copper Catalyzed N ² â€Arylation of 1,2,3â€Triazoles. ChemistrySelect, 2017, 2, 6544-6548.	0.7	5
84	Structural determination Vitex cymosa Bertero active principle: Diastereoselective synthesis of (±)-trans-4-hydroxy-6-propyl-1-oxocyclohexan-2-one and its antinociceptive activity. Bioorganic Chemistry, 2010, 38, 181-185.	2.0	4
85	Counteracting the contemporaneous proliferation of digital forgeries and fake news. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180149.	0.3	4
86	Forensic Event Analysis: From Seemingly Unrelated Data to Understanding. IEEE Security and Privacy, 2020, 18, 23-32.	1.5	4
87	Studies on the laccases catalyzed oxidation of norbelladine like acetamides. Molecular Catalysis, 2020, 485, 110788.	1.0	4
88	Organocatalysis applied to carbohydrates: from roots to current developments. Organic and Biomolecular Chemistry, 2022, 20, 919-933.	1.5	4
89	Recent Advances in Applied Biocatalysis and Biotechnology. Biotechnology Advances, 2015, 33, 371.	6.0	3
90	First Enantioselective Synthesis of (-)-(2S,6S)-(6-Ethyltetrahydropyran-2-yl)formic Acid. Synlett, 2005, 2005, 0869-0871.	1.0	1

#	Article	IF	CITATIONS
91	Frontispiece: Cannabidiol Discovery and Synthesis—a Targetâ€Oriented Analysis in Drug Production Processes. Chemistry - A European Journal, 2021, 27, .	1.7	1
92	Recent advances in the functionalization of unprotected carbohydrates. Carbohydrate Chemistry, 2021, , 239-304.	0.3	1
93	Improving the Toolbox of Bioreductions by the Use of Continuous Flow Systems. Journal of the Brazilian Chemical Society, 2015, , .	0.6	0
94	Frontispiece: A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry - A European Journal, 2017, 23, .	1.7	0
95	Copper catalysis in the synthesis of 1,2,3-triazoles and tetrazoles. , 2021, , 75-113.		Ο
96	Continuous Flow Reactions: From Green Chemistry Towards a Green Process. Revista Virtual De Quimica, 2014, 6, .	0.1	0