
Rudraswamy N G

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MHD Flow and Nonlinear Thermal Radiative Heat Transfer of Dusty Prandtl Fluid over a Stretching Sheet. Fluid Dynamics and Materials Processing, 2020, 16, 131-146.	0.7	7
2	Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate. Results in Physics, 2018, 8, 694-701.	4.1	40
3	Enhancement of heat transfer in an unsteady rotating flow for the aqueous suspensions of single wall nanotubes under nonlinear thermal radiation: a numerical study. Colloid and Polymer Science, 2018, 296, 1501-1508.	2.1	21
4	MHD Flow and Heat Transfer (PST and PHF) of Dusty Fluid Suspended with Alumina Nanoparticles Over a Stretching Sheet Embedded in a Porous Medium Under the Influence of Thermal Radiation. Journal of Nanofluids, 2018, 7, 527-535.	2.7	12
5	Double-Diffusive Free Convective Flow of Maxwell Nanofluid Past a Stretching Sheet with Nonlinear Thermal Radiation. Journal of Nanofluids, 2018, 7, 499-508.	2.7	11
6	Non linear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface. Results in Physics, 2017, 7, 3196-3202.	4.1	55
7	Effect of nonlinear thermal radiation on double-diffusive mixed convection boundary layer flow of viscoelastic nanofluid over a stretching sheet. International Journal of Mechanical and Materials Engineering, 2017, 12, .	2.2	31
8	Numerical analysis of MHD three-dimensional Carreau nanoliquid flow over bidirectionally moving surface. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 5037-5047.	1.6	33
9	Combined Effect of Joule Heating and Viscous Dissipation on MHD Three Dimensional Flow of a Jeffrey Nanofluid. Journal of Nanofluids, 2017, 6, 300-310.	2.7	22
10	Effect of Internal Heat Generation/Absorption and Viscous Dissipation on MHD Flow and Heat Transfer of Nanofluid with Particle Suspension Over a Stretching Surface. Journal of Nanofluids, 2016, 5, 1000-1010.	2.7	6
11	MHD Flow and Heat Transfer of a Nanofluid Embedded with Dust Particles Over a Stretching Sheet. Journal of Nanofluids, 2015, 4, 66-72.	2.7	11
12	Effects of Magnetic Field and Chemical Reaction on Stagnation-Point Flow and Heat Transfer of a Nanofluid Over an Inclined Stretching Sheet. Journal of Nanofluids, 2015, 4, 239-246.	2.7	9
13	Effect of Inclination Angle and Magnetic Field on Flow and Heat Transfer of a Nanofluid Over an Impermeable Stretching Sheet. Journal of Nanofluids, 2014, 3, 181-187.	2.7	1