
Hong-Shang Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range. Advanced Materials, 2010, 22, 716-719.	21.0	409
2	Soft fluorescent nanomaterials for biological and biomedical imaging. Chemical Society Reviews, 2015, 44, 4699-4722.	38.1	345
3	A Nanogel for Ratiometric Fluorescent Sensing of Intracellular pH Values. Angewandte Chemie - International Edition, 2010, 49, 4246-4249.	13.8	220
4	Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 14148-14154.	2.6	188
5	pH sensor based on upconverting luminescent lanthanide nanorods. Chemical Communications, 2009, , 5000.	4.1	179
6	Luminescent terbium and europium probes for lifetime based sensing of temperature between 0 and 70 °C. Journal of Materials Chemistry, 2010, 20, 6975.	6.7	123
7	Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3:Eu3+. Journal of Chemical Physics, 2003, 118, 3277-3282.	3.0	120
8	Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium (III) Complex Probe. Journal of Physical Chemistry C, 2010, 114, 12642-12648.	3.1	106
9	Light-induced change of charge transfer band in nanocrystalline Y2O3:Eu3+. Applied Physics Letters, 2002, 81, 1776-1778.	3.3	92
10	Key issues and recent progress of high efficient organic light-emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 69-104.	11.6	83
11	Fluorescence properties of trivalent europium doped in various niobate codoped glasses. Journal of Applied Physics, 2003, 93, 1482-1486.	2.5	80
12	Size-dependent electronic transition rates in cubic nanocrystalline europium doped yttria. Chemical Physics Letters, 2003, 376, 1-5.	2.6	66
13	Ratiometric fluorescent nanoparticles for sensing temperature. Journal of Nanoparticle Research, 2010, 12, 2729-2733.	1.9	64
14	Highly Luminescent Eu3+Chelate Nanoparticles Prepared by a Reprecipitationâ^'Encapsulation Method. Langmuir, 2007, 23, 1591-1595.	3.5	56
15	Indocyanine green-platinum porphyrins integrated conjugated polymer hybrid nanoparticles for near-infrared-triggered photothermal and two-photon photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 1856-1862.	5.8	56
16	Spectral difference between nanocrystalline and bulk Y2O3:Eu3+. Chemical Physics Letters, 2003, 370, 485-489.	2.6	54
17	Poly-I-lysine assisted synthesis of core–shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. Journal of Materials Chemistry B, 2013, 1, 5143.	5.8	53
18	Facile One-Step Synthesis and Transformation of Cu(I)-Doped Zinc Sulfide Nanocrystals to Cu _{1.94} S–ZnS Heterostructured Nanocrystals. Langmuir, 2013, 29, 8728-8735.	3.5	45

2

#	Article	IF	CITATIONS
19	Biocompatible fluorescent core–shell nanoparticles for ratiometric oxygen sensing. Journal of Materials Chemistry, 2012, 22, 16066.	6.7	42
20	Targetable Phosphorescent Oxygen Nanosensors for the Assessment of Tumor Mitochondrial Dysfunction By Monitoring the Respiratory Activity. Angewandte Chemie - International Edition, 2014, 53, 12471-12475.	13.8	41
21	In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability. Journal of Colloid and Interface Science, 2018, 509, 32-38.	9.4	41
22	Preparation and Surface Effect Analysis of Trivalent Europium-Doped Nanocrystalline La2O2S. Journal of Physical Chemistry B, 2005, 109, 5774-5778.	2.6	40
23	Visible-light sensitized sol–gel-based lanthanide complexes (Sm, Yb, Nd, Er, Pr, Ho, Tm): microstructure, photoluminescence study, and thermostability. RSC Advances, 2013, 3, 26367.	3.6	36
24	Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ ions. Materials Research Bulletin, 2019, 112, 142-146.	5.2	36
25	Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds. Nanotechnology, 2013, 24, 355602.	2.6	33
26	Ultrastable Luminescent Organic–Inorganic Perovskite Quantum Dots via Surface Engineering: Coordination of Methylammonium Bromide and Covalent Silica Encapsulation. ACS Applied Materials & Interfaces, 2018, 10, 42837-42843.	8.0	30
27	Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 4482-4489.	5.8	27
28	Site selective excitation in La2O3:Eu3+ nanoparticles. Journal of Luminescence, 2007, 122-123, 844-846.	3.1	26
29	Luminescent Ru(bpy)3 2+-doped silica nanoparticles for imaging of intracellular temperature. Mikrochimica Acta, 2014, 181, 743-749.	5.0	26
30	Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometricÂsensing and in photodynamic therapy. Mikrochimica Acta, 2019, 186, 842.	5.0	25
31	Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen. Mikrochimica Acta, 2012, 178, 147-152.	5.0	24
32	Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization. Sensors, 2016, 16, 232.	3.8	22
33	Organic ultraviolet photodetector based on phosphorescent material. Optics Letters, 2013, 38, 3823.	3.3	21
34	Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. ACS Sensors, 2019, 4, 984-991.	7.8	21
35	A fluorescent nanoprobe for real-time monitoring of intracellular singlet oxygen during photodynamic therapy. Mikrochimica Acta, 2018, 185, 269.	5.0	20
36	Energy transfer from Ce3+ to Tb3+, Dy3+ and Eu3+ in Na3Y(BO3)2. Journal of Rare Earths, 2015, 33, 1051-1055.	4.8	19

#	Article	IF	CITATIONS
37	Ultraviolet to near-infrared energy transfer in NaYF4:Nd3+,Yb3+ crystals. Journal of Rare Earths, 2016, 34, 863-867.	4.8	19
38	Light-induced change of charge transfer band in one europium doped aluminosilicate glass. Chemical Physics Letters, 2003, 368, 412-415.	2.6	18
39	An integrated experimental and theoretical study on the optical properties of uniform hairy noble metal nanoparticles. Nanoscale, 2018, 10, 22750-22757.	5.6	18
40	Facile synthesis of polypyrrole–rhodamine B nanoparticles for self-monitored photothermal therapy of cancer cells. Journal of Materials Chemistry B, 2020, 8, 1033-1039.	5.8	18
41	Application of original and modified Judd–Ofelt theories to the 1S0 state of Pr3+-doped SrAl12O19 and LaF3. Physica B: Condensed Matter, 2007, 387, 86-91.	2.7	17
42	Optically Encoded Semiconducting Polymer Dots with Single-Wavelength Excitation for Barcoding and Tracking of Single Cells. Analytical Chemistry, 2017, 89, 6232-6238.	6.5	17
43	Simple synthesis method of reduced graphene oxide/gold nanoparticle and its application in surface-enhanced Raman scattering. Chemical Physics Letters, 2013, 582, 119-122.	2.6	16
44	Sensing water in organic solvent using a polyurethane-silica hybrid membrane doped with a luminescent ruthenium complex. Mikrochimica Acta, 2013, 180, 807-812.	5.0	15
45	Mitochondria-targeted theranostic nanoparticles forÂoptical sensingÂof oxygen, photodynamic cancer therapy, and assessment of therapeutic efficacy. Mikrochimica Acta, 2016, 183, 2723-2731.	5.0	14
46	Analysis of surface effect on luminescent properties of Eu3+ in YVO4 nanocrystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 367, 211-214.	2.1	13
47	Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy. Journal of Colloid and Interface Science, 2022, 616, 81-92.	9.4	12
48	Facile synthesis of fluorinated nanophotosensitizers with self-supplied oxygen for efficient photodynamic therapy. Nanotechnology, 2019, 30, 345207.	2.6	11
49	A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency. Nanomaterials, 2021, 11, 1293.	4.1	11
50	Fluorescein isothiocyanate-doped conjugated polymer nanoparticles for two-photon ratiometric fluorescent imaging of intracellular pH fluctuations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120477.	3.9	11
51	Excited state dynamics of Gd3+ and energy transfer efficiency from Gd3+ to Tb3+ in (La, Gd)PO4:Tb3+. Journal of Luminescence, 2014, 152, 138-141.	3.1	10
52	Synthesis and Near-Infrared Luminescent Properties of NaGdF ₄ :Nd ³⁺ @NaGdF ₄ Core/Shell Nanocrystals with Different Shell Thickness. Journal of Nanoscience and Nanotechnology, 2016, 16, 3940-3944.	0.9	10
53	Preparation of photoluminescent enzymatic nanosensors for glucose sensing. Sensors and Actuators B: Chemical, 2016, 222, 638-644.	7.8	10
54	Core-Shell Structure in Doped Inorganic Nanoparticles: Approaches for Optimizing Luminescence Properties. Journal of Nanomaterials, 2013, 2013, 1-10.	2.7	9

#	Article	IF	CITATIONS
55	Ratiometric Luminescent Nanoprobes Based on Ruthenium and Terbium-Containing Metallopolymers for Intracellular Oxygen Sensing. Polymers, 2019, 11, 1290.	4.5	9
56	Facile synthesis of dual-functional nanoparticles co-loaded with ZnPc/Fe3O4 for PDT and magnetic resonance imaging. Materials Research Bulletin, 2019, 114, 90-94.	5.2	9
57	Construction of FRETâ€Based Offâ€On Fluorescent Nanoprobes for Sensitive Detection of Intracellular Singlet Oxygen. ChemNanoMat, 2020, 6, 232-238.	2.8	9
58	Real-time drug release monitoring from pH-responsive CuS-encapsulated metal–organic frameworks. RSC Advances, 2022, 12, 11119-11127.	3.6	9
59	Two-photon oxygen nanosensors based on a conjugated fluorescent polymer doped with platinum porphyrins. Methods and Applications in Fluorescence, 2018, 6, 035008.	2.3	8
60	One-Step Nanoengineering of Hydrophobic Photosensitive Drugs for the Photodynamic Therapy. Journal of Nanoscience and Nanotechnology, 2015, 15, 10141-10148.	0.9	7
61	Improved luminescence in YVO4:Eu3+@YVO4 core–shell nanoparticles through surface-confined thermal diffusion of Eu3+. Materials Letters, 2015, 157, 307-310.	2.6	7
62	Plasmon-Enhanced Blue-Light Emission of Stable Perovskite Quantum Dot Membranes. Nanomaterials, 2019, 9, 770.	4.1	7
63	Broadband organic photodetectors exhibiting photomultiplication with a narrow bandgap non-fullerene acceptor as an electron trap. Journal of Materials Chemistry C, 2020, 8, 9854-9860.	5.5	7
64	Preparation of Gold Nanoparticles-Attached Phosphorescent Nanospheres for Synergistic Photothermal and Photodynamic Therapy. Nanoscience and Nanotechnology Letters, 2017, 9, 227-232.	0.4	6
65	Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films. Journal of Nanoparticle Research, 2011, 13, 7263-7269.	1.9	5
66	Energy transfer and luminescent properties of Pr3+ and/or Dy3+ doped NaYF4 and NaGdF4. Journal of Rare Earths, 2013, 31, 1125-1129.	4.8	5
67	Facile synthesis of multifunctional nanoparticles encoded with quantum dots and magnetic nanoparticles: cell tagging and MRI. Nanotechnology, 2020, 31, 065101.	2.6	5
68	Luminescent ruthenium(II)-containing metallopolymers with different ligands: synthesis and application as oxygen nanosensor for hypoxia imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 2579-2587.	3.7	5
69	Recent Progresses in NIR-II Luminescent Bio/Chemo Sensors Based on Lanthanide Nanocrystals. Chemosensors, 2022, 10, 206.	3.6	5
70	Surface state analysis of YVO4:Eu3+ nanocrystals by electrostatic point charge model. Journal of Luminescence, 2007, 122-123, 847-850.	3.1	4
71	Efficient energy transfer from the Pr3+ 4f5d states to Eu3+ via Gd3+ in K2GdF5. Journal of Luminescence, 2014, 145, 620-625.	3.1	4
72	A Pyrene@Micelle Sensor for Fluorescent Oxygen Sensing. BioMed Research International, 2015, 2015, 1-6.	1.9	4

#	Article	IF	CITATIONS
73	Safe growth of graphene from non-flammable gas mixtures via chemical vapor deposition. Journal of Materials Science and Technology, 2017, 33, 285-290.	10.7	4
74	Temperature-Dependent Photoluminescence of Ce3+ Doped CsPbCl3 Perovskite Quantum Dots. Journal of Nanoscience and Nanotechnology, 2018, 18, 7561-7565.	0.9	4
75	VUV spectroscopic properties and 4fn-15d level positions of trivalent lanthanide ions doped into Na3Y(BO3)2. Journal of Luminescence, 2019, 213, 489-493.	3.1	4
76	Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors. Methods and Applications in Fluorescence, 2016, 4, 035001.	2.3	3
77	Facile Synthesis of ZnPcâ€Polydopamine Coâ€loaded Nanoparticles for Synergetic Photodynamicâ€Photothermal Therapy. ChemNanoMat, 2021, 7, 1322-1329.	2.8	3
78	An optimized, sensitive and stable reduced graphene oxide–gold nanoparticle-luminol-H ₂ O ₂ chemiluminescence system and its potential analytical application. Chinese Physics B, 2014, 23, 048103.	1.4	2
79	Ag oupled Polymeric Nanohybrids with Synergistic Photodynamic and Photothermal Activities for Advanced Antibacterial Therapy. ChemNanoMat, 2022, 8, .	2.8	2
80	Sensitization of Gd3+ ions by Tb3+ ions in Tb3+ doped (La, Gd)PO4. Chemical Physics Letters, 2014, 601, 21-25.	2.6	1
81	Preparation of Fluorescent Dye-Doped Biocompatible Nanoparticles for Cell Labeling. Journal of Nanoscience and Nanotechnology, 2016, 16, 3602-3607.	0.9	1
82	Intracellular Temperature Imaging in Gold Nanorod-Assisted Photothermal Therapy with Luminescent Eu(III) Chelate Nanoparticles. Journal of Nanoscience and Nanotechnology, 2016, 16, 3877-3882.	0.9	1
83	Fluorescent Probes for Sensing and Imaging Biological Hydrogen Sulfide. Analysis & Sensing, 2022, 2, .	2.0	1
84	Preparation and Characterization of EuVO ₄ @YVO ₄ . Integrated Ferroelectrics, 2012, 136, 113-117.	0.7	0
85	Effect of Lu2O3 Coating on Structural and Luminescent Properties of Y2O3:Eu3+ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 7595-7599.	0.9	0
86	Strategies Towards Improving the Stability of All-Inorganic Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , 347-372.	0.6	0