Kirill Ukhanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionotropic Crustacean Olfactory Receptors. PLoS ONE, 2013, 8, e60551.	2.5	58
2	Phosphoinositide 3-Kinase-Dependent Antagonism in Mammalian Olfactory Receptor Neurons. Journal of Neuroscience, 2011, 31, 273-280.	3.6	46
3	Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Molecular Therapy, 2017, 25, 904-916.	8.2	41
4	Inhibitory Odorant Signaling in Mammalian Olfactory Receptor Neurons. Journal of Neurophysiology, 2010, 103, 1114-1122.	1.8	40
5	Patch-Clamp Analysis of Gene-Targeted Vomeronasal Neurons Expressing a Defined V1r or V2r Receptor: Ionic Mechanisms Underlying Persistent Firing. Journal of Neurophysiology, 2007, 98, 2357-2369.	1.8	38
6	Peripheral Gene Therapeutic Rescue of an Olfactory Ciliopathy Restores Sensory Input, Axonal Pathfinding, and Odor-Guided Behavior. Journal of Neuroscience, 2018, 38, 7462-7475.	3.6	32
7	BBS4 is required for IFT coordination and basal body number in mammalian olfactory cilia Journal of Cell Science, 2019, 132, .	2.0	27
8	INPP5E controls ciliary localization of phospholipids and the odor response in olfactory sensory neurons. Journal of Cell Science, 2022, 135, .	2.0	19
9	Phosphoinositide 3-Kinase Dependent Inhibition as a Broad Basis for Opponent Coding in Mammalian Olfactory Receptor Neurons. PLoS ONE, 2013, 8, e61553.	2.5	18
10	Cellular Basis for Response Diversity in the Olfactory Periphery. PLoS ONE, 2012, 7, e34843.	2.5	10
11	Gene therapy rescues olfactory perception in a clinically relevant ciliopathy model of Bardet–Biedl syndrome. FASEB Journal, 2021, 35, e21766.	0.5	8
12	Inhibitory signaling in mammalian olfactory transduction potentially mediated by Gαo. Molecular and Cellular Neurosciences, 2021, 110, 103585.	2.2	8
13	Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons. Frontiers in Cellular Neuroscience, 2016, 10, 97.	3.7	7
14	Initial Characterization of a Subpopulation of Inherent Oscillatory Mammalian Olfactory Receptor Neurons. Chemical Senses, 2019, 44, 583-592.	2.0	4
15	Photoactivatable Odorants for Chemosensory Research. ACS Chemical Biology, 2020, 15, 2516-2528.	3.4	4
16	Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies. JCI Insight, 2022, 7, .	5.0	2
17	Mixture interactions at mammalian olfactory receptors are dependent on the cellular environment. Scientific Reports, 2021, 11, 9278.	3.3	1