Pedro Almendros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/748402/publications.pdf

Version: 2024-02-01

242 papers

8,916 citations

50 h-index 81 g-index

343 all docs 343 docs citations

times ranked

343

4867 citing authors

#	Article	IF	CITATIONS
1	β-Lactams:  Versatile Building Blocks for the Stereoselective Synthesis of Non-β-Lactam Products. Chemical Reviews, 2007, 107, 4437-4492.	23.0	474
2	Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chemical Society Reviews, 2010, 39, 783-816.	18.7	349
3	Grubbs' Ruthenium-Carbenes Beyond the Metathesis Reaction: Less Conventional Non-Metathetic Utility. Chemical Reviews, 2009, 109, 3817-3858.	23.0	303
4	The Direct Catalytic Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2002, 2002, 1595-1601.	1.2	225
5	& Eamp;#946;-Lactams as Versatile Synthetic Intermediates for the Preparation of Heterocycles of Biological Interest. Current Medicinal Chemistry, 2004, 11, 1921-1949.	1.2	191
6	Gold-Catalyzed Cyclization Reactions of Allenol and Alkynol Derivatives. Accounts of Chemical Research, 2014, 47, 939-952.	7.6	185
7	4-Oxoazetidine-2-carbaldehydes as useful building blocks in stereocontrolled synthesis. Chemical Society Reviews, 2001, 30, 226-240.	18.7	154
8	Selective Bond Cleavage of the \hat{l}^2 -Lactam Nucleus: Application in Stereocontrolled Synthesis. Synlett, 2002, 2002, 0381-0393.	1.0	139
9	The Direct Catalytic Asymmetric Cross-Aldol Reaction of Aldehydes. Angewandte Chemie - International Edition, 2003, 42, 858-860.	7.2	125
10	Efficient Entry to Diversely Functionalized Spirocyclic Oxindoles from Isatins through Carbonyl-Addition/Cyclization Reaction Sequences. Journal of Organic Chemistry, 2006, 71, 2346-2351.	1.7	117
11	Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chemical Reviews, 2021, 121, 4193-4252.	23.0	117
12	Metalâ€Catalyzed Regiodivergent Cyclization of γâ€Allenols: Tetrahydrofurans versus Oxepanes. Angewandte Chemie - International Edition, 2007, 46, 6684-6687.	7.2	114
13	Gold catalyzed oxycyclizations of alkynols and alkyndiols. Organic and Biomolecular Chemistry, 2011, 9, 4405.	1.5	112
14	Cyclization reactions of bis(allenes) for the synthesis of polycarbo(hetero)cycles. Chemical Society Reviews, 2014, 43, 3106-3135.	18.7	111
15	A Novel Use of Grubbs' Carbene. Application to the Catalytic Deprotection of Tertiary Allylamines. Organic Letters, 2001, 3, 3781-3784.	2.4	109
16	Non-Metathetic Behavior Patterns of Grubbs' Carbene. Chemistry - A European Journal, 2003, 9, 1258-1262.	1.7	108
17	Additions of Allenyl/Propargyl Organometallic Reagents to 4-Oxoazetidine-2-carbaldehydes: Novel Palladium-Catalyzed Domino Reactions in Allenynes. Chemistry - A European Journal, 2002, 8, 1719-1729.	1.7	97
18	Reaction of Two Different α-Allenols in a Heterocyclization/Cross-Coupling Sequence: Convenient Access to Functionalized Buta-1,3-dienyl Dihydrofurans. Angewandte Chemie - International Edition, 2006, 45, 4501-4504.	7.2	96

#	Article	IF	Citations
19	The Allenic Pausonâ^'Khand Reaction in Synthesis. European Journal of Organic Chemistry, 2004, 2004, 3377-3383.	1.2	89
20	Progress in allene chemistry. Chemical Society Reviews, 2014, 43, 2886.	18.7	85
21	Proline-Catalyzed Diastereoselective Direct Aldol Reaction between 4-Oxoazetidine-2-carbaldehydes and Ketones. Journal of Organic Chemistry, 2006, 71, 4818-4822.	1.7	82
22	Organocatalytic Reactions with Acetaldehyde. Angewandte Chemie - International Edition, 2008, 47, 4632-4634.	7.2	80
23	Ruthenium-Catalyzed Chemoselective N-Allyl Cleavage: Novel Grubbs Carbene Mediated Deprotection of Allylic Amines. Chemistry - A European Journal, 2003, 9, 5793-5799.	1.7	79
24	Pd-Cu Bimetallic Catalyzed Domino Cyclization of \hat{l}_{\pm} -Allenols Followed by a Coupling Reaction: New Sequence Leading to Functionalized Spirolactams. Chemistry - A European Journal, 2005, 11, 5708-5712.	1.7	79
25	Novel Cyclization Reactions of Aminoallenes. Advanced Synthesis and Catalysis, 2011, 353, 2561-2576.	2.1	79
26	Fascinating reactivity in gold catalysis: synthesis of oxetenes through rare 4-exo-dig allene cyclization and infrequent \hat{l}^2 -hydride elimination. Chemical Communications, 2011, 47, 9054.	2.2	76
27	Metal-Promoted Allylation, Propargylation, or Allenylation of Azetidine-2,3-diones in Aqueous and Anhydrous Media. Application to the Asymmetric Synthesis of Densely Functionalized 3-Substituted 3-Hydroxy-Î ² -lactams. Journal of Organic Chemistry, 2001, 66, 5208-5216.	1.7	74
28	Organocatalytic Ring Expansion of \hat{l}^2 -Lactams to \hat{l}^3 -Lactams through a Novel N1â^C4 Bond Cleavage. Direct Synthesis of Enantiopure Succinimide Derivatives. Organic Letters, 2005, 7, 3981-3984.	2.4	73
29	Iminophosphorane-mediated syntheses of the fascaplysin alkaloid of marine origin and nitramarine. Tetrahedron Letters, 1994, 35, 8851-8854.	0.7	71
30	Domino Meyer–Schuster/Arylation Reaction of Alkynols or Alkynyl Hydroperoxides with Diazonium Salts Promoted by Visible Light under Dual Gold and Ruthenium Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 1526-1533.	2.1	71
31	Straightforward Asymmetric Entry to Highly Functionalized Medium-Sized Rings Fused to β-Lactams via Chemo- and Stereocontrolled Divergent Radical Cyclization of Baylisâ⁻'Hillman Adducts Derived from 4-Oxoazetidine-2-carbaldehydesâ€. Journal of Organic Chemistry, 2001, 66, 1612-1620.	1.7	69
32	Metal-Mediated Entry to Functionalized 3-Substituted 3-Hydroxyindolin-2-ones via Regiocontrolled Carbonylallylation, Bromoallylation, 1,3-Butadien-2-ylation, Propargylation, or Allenylation Reactions of Isatins in Aqueous Media. Journal of Organic Chemistry, 2005, 70, 3198-3204.	1.7	69
33	Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives. Molecules, 2011, 16, 7815-7843.	1.7	67
34	Synthesis of Strained Tricyclic \hat{l}^2 -Lactams by Intramolecular [2+2] Cycloaddition Reactions of 2-Azetidinone-Tethered Enallenols: Control of Regioselectivity by Selective Alkene Substitution. Chemistry - A European Journal, 2006, 12, 1539-1546.	1.7	63
35	A Practical Ruthenium-Catalyzed Cleavage of the Allyl Protecting Group in Amides, Lactams, Imides, and Congeners. Chemistry - A European Journal, 2006, 12, 2874-2879.	1.7	63
36	Crossâ€Coupling/Cyclization Reactions of Two Different Allenic Moieties. Chemistry - A European Journal, 2010, 16, 5836-5842.	1.7	63

3

#	Article	IF	CITATIONS
37	Diversity-Oriented Preparation of Enantiopure Spirocyclic 2-Azetidinones from α-Oxo-β-lactams through Barbier-Type Reactions followed by Metal-Catalyzed Cyclizations. Advanced Synthesis and Catalysis, 2007, 349, 749-758.	2.1	61
38	Regioselectivity Control in the Metalâ€Catalyzed OC Functionalization of γâ€Allenols, Partâ€1: Experimental Study. Chemistry - A European Journal, 2009, 15, 1901-1908.	1.7	61
39	Efficient Entry to Highly Functionalized \hat{l}^2 -Lactams by Regio- and Stereoselective 1,3-Dipolar Cycloaddition Reaction of 2-Azetidinone-Tethered Nitrones. Synthetic Applications. Journal of Organic Chemistry, 2002, 67, 7004-7013.	1.7	60
40	New Regiocontrolled Synthesis of Functionalized Pyrroles from 2â€Azetidinoneâ€Tethered Allenols. Chemistry - A European Journal, 2008, 14, 637-643.	1.7	59
41	Gold―or Palladiumâ€Catalyzed Allene Carbocyclization/Functionalization: Simple and Efficient Synthesis of Carbazoles. Advanced Synthesis and Catalysis, 2011, 353, 1871-1876.	2.1	59
42	Recent Advances in the Stereocontrolled Synthesis of Bi- and Tricyclic-β-Lactams with Non-Classical Structure. Current Organic Chemistry, 2002, 6, 245-264.	0.9	57
43	Structurally Novel Bi- and Tricyclic \hat{I}^2 -Lactams via $[2+2]$ Cycloaddition or Radical Reactions in 2-Azetidinone-Tethered Enallenes and Allenynes. Organic Letters, 2003, 5, 3795-3798.	2.4	57
44	Synthesis of Optically Pure Highly Functionalized γ-Lactams via 2-Azetidinone-Tethered Iminophosphoranes. Journal of Organic Chemistry, 2004, 69, 993-996.	1.7	57
45	Unveiling the Reactivity of Propargylic Hydroperoxides under Gold Catalysis. Journal of the American Chemical Society, 2013, 135, 898-905.	6.6	56
46	Photopromoted Entry to Benzothiophenes, Benzoselenophenes, 3 <i>H</i> àêIndoles, Isocoumarins, Benzosultams, and (Thio)flavones by Goldâ€Catalyzed Arylative Heterocyclization of Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 2640-2652.	2.1	56
47	Allenylâ€Î²â€lactams: versatile scaffolds for the synthesis of heterocycles. Chemical Record, 2011, 11, 311-330.	2.9	55
48	Regio- and Stereocontrolled Metal-Mediated Carbonyl Propargylation or Allenylation of Enantiomerically Pure Azetidine-2,3-diones:  Synthesis of Highly Functionalized 3-Substituted 3-Hydroxy-β-lactams. Organic Letters, 2000, 2, 1411-1414.	2.4	53
49	Chemodivergence in Alkene/Allene Cycloetherification of Enallenols: Iron versus Noble Metal Catalysis. Chemistry - A European Journal, 2008, 14, 7756-7759.	1.7	53
50	Synthesis of Spiroheterocycles by Palladiumâ€Catalyzed Domino Cycloisomerization/Crossâ€Coupling of αâ€Allenols and Baylis–Hillman Acetates. Chemistry - A European Journal, 2009, 15, 3344-3346.	1.7	53
51	Metalâ€Catalyzed Cycloetherification Reactions of β,γ―and γ,δâ€Allendiols: Chemoâ€, Regioâ€, and Stereocont the Synthesis of Oxacycles. Chemistry - A European Journal, 2010, 16, 13243-13252.	trol in 1.7	53
52	Novel Diethylaluminum Chloride Promoted Reactions of the Azetidine Ring:Â Efficient and Stereocontrolled Entry to Functionalized Olefins, Pyrrolidines, and Pyrroles. Journal of Organic Chemistry, 1999, 64, 9596-9604.	1.7	52
53	Allene Substitution-Controlled Switching of Dimerization to Cycloisomerization in the PdII-Catalyzed Reaction of Terminal α-Allenones. European Journal of Organic Chemistry, 2007, 2007, 2844-2849.	1.2	52
54	Useful Dual Diels–Alder Behavior of 2-Azetidinone-Tethered Aryl Imines as Azadienophiles or Azadienes: A -Lactam-Based Stereocontrolled Access to Optically Pure Highly Functionalized Indolizidine Systems. Chemistry - A European Journal, 2003, 9, 3415-3426.	1.7	51

#	Article	IF	CITATIONS
55	Stereoselective Allylation of 4-Oxoazetidine-2-carbaldehydes. Application to the Stereocontrolled Synthesis of Fused Tricyclic β-Lactams via Intramolecular Dielsã° Alder Reaction of 2-Azetidinone-Tethered Trienesâ€. Journal of Organic Chemistry, 2000, 65, 3310-3321.	1.7	50
56	Rapid and Stereocontrolled Synthesis of Racemic and Optically Pure Highly Functionalized Pyrrolizidine Systems via Rearrangement of 1,3-Dipolar Cycloadducts Derived from 2-Azetidinone-Tethered Azomethine Ylides. Journal of Organic Chemistry, 2001, 66, 1351-1358.	1.7	47
57	Direct organocatalytic synthesis of enantiopure succinimides from \hat{l}^2 -lactam aldehydes through ring expansion promoted by azolium salt precatalysts. Chemical Communications, 2007, , 4788.	2.2	47
58	Metalâ€Catalyzed Cyclization of β―and γâ€Allenols Derived from <scp>D</scp> â€Glyceraldehydeâ€"Synthesis Enantiopure Dihydropyrans and Tetrahydrooxepines: An Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 9127-9138.	of 1.7	47
59	Indiumâ€Promoted Allylation Reaction of Iminoâ€Isatins in Aqueous Media: Synthesis of Quaternary 3â€Aminooxindoles. European Journal of Organic Chemistry, 2010, 2010, 2845-2848.	1.2	47
60	Straightforward Synthesis of Bridged Azaoxa Skeletons: Goldâ€Catalyzed Aminoketalization of Garner's Aldehydeâ€Derived Alkynes. Chemistry - A European Journal, 2011, 17, 4968-4971.	1.7	47
61	Novel ruthenium-catalyzed cleavage of allyl protecting group in lactams. Tetrahedron Letters, 2003, 44, 8693-8695.	0.7	46
62	Divergent Reactivity of 2â€Azetidinoneâ€Tethered Allenols with Electrophilic Reagents: Controlled Ring Expansion <i>versus</i> Spirocyclization. Advanced Synthesis and Catalysis, 2010, 352, 621-626.	2.1	45
63	Gold-catalysed tuning of reactivity in allenes: 9-endo hydroarylation versus formal 5-exo hydroalkylation. Chemical Communications, 2013, 49, 1282.	2.2	45
64	Gold/Acidâ€Cocatalyzed Regiodivergent Preparation of Bridged Ketals <i>via</i> Direct Bisâ€Oxycyclization of Alkynic Acetonides. Advanced Synthesis and Catalysis, 2010, 352, 1277-1283.	2.1	44
65	Metal-Mediated Carbonyl-1,3-butadien-2-ylation by 1,4-Bis(methanesulfonyl)-2-butyne or 1,4-Dibromo-2-butyne in Aqueous Media: Asymmetric Synthesis of 3-Substituted 3-Hydroxy-β-lactams. Journal of Organic Chemistry, 2002, 67, 1925-1928.	1.7	43
66	Stereoselective Synthesis of 1,2,3-Trisubstituted 1,3-Dienes through Novel [3,3]-Sigmatropic Rearrangements in ?-Allenic Methanesulfonates: Application to the Preparation of Fused Tricyclic Systems by Tandem Rearrangement/Diels?Alder Reaction. European Journal of Organic Chemistry, 2005, 2005, 98-106.	1.2	43
67	Iminophosphorane-mediated imidazole ring formation: A new and general entry to aplysinopsin-type alkaloids of marine origin Tetrahedron, 1994, 50, 2241-2254.	1.0	42
68	RECENT PROGRESS IN THE SYNTHESIS AND REACTIVITY OF AZETIDINE-2,3-DIONES. A REVIEW. Organic Preparations and Procedures International, 2001, 33, 315-334.	0.6	42
69	Carbonyl Allenylation/Free Radical Cyclization Sequence as a New Regio- and Stereocontrolled Access to Bi- and Tricyclic β-Lactams. Journal of Organic Chemistry, 2007, 72, 1604-1608.	1.7	42
70	Diastereoselective Synthesis of βâ€Lactam–Oxindole Hybrids Through a Threeâ€Component Reaction of Azetidineâ€2,3â€diones, αâ€Diazoâ€oxindoles, and Alcohols Catalyzed by [Rh ₂ (OAc) ₄ European Journal of Organic Chemistry, 2012, 2012, 2359-2366.]1.2	42
71	Regioselectivity Control in the Metalâ€Catalyzed Functionalization of γâ€Allenols, Partâ€2: Theoretical Study. Chemistry - A European Journal, 2009, 15, 1909-1928.	1.7	41
72	Accessing Skeletal Diversity under Iron Catalysis using Substrate Control: Formation of Pyrroles <i>versus</i> Lactones. Advanced Synthesis and Catalysis, 2011, 353, 585-594.	2.1	41

#	Article	lF	Citations
73	Novel Carbonyl Bromoallylation/Heck Reaction Sequence. Stereocontrolled Access to Bicyclic \hat{l}^2 -Lactams. Journal of Organic Chemistry, 2005, 70, 2713-2719.	1.7	40
74	Ring Expansion <i>versus</i> Cyclization in 4â€Oxoazetidineâ€2―carbaldehydes Catalyzed by Molecular lodine: Experimental and Theoretical Study in Concert. Advanced Synthesis and Catalysis, 2010, 352, 1688-1700.	2.1	39
75	Carbocyclization versus Oxycyclization on the Metal-Catalyzed Reactions of Oxyallenyl C3-Linked Indoles. Journal of Organic Chemistry, 2013, 78, 6688-6701.	1.7	39
76	Photoinduced Gold-Catalyzed Domino C(sp) Arylation/Oxyarylation of TMS-Terminated Alkynols with Arenediazonium Salts. Journal of Organic Chemistry, 2017, 82, 2177-2186.	1.7	39
77	Diastereoselective Baylis–Hillman reaction of 4-oxoazetidine-2-carbaldehydes: rapid, stereocontrolled and divergent radical synthesis of highly functionalised β-lactams fused to medium rings. Chemical Communications, 1999, , 1913-1914.	2.2	38
78	Asymmetric Synthesis of Unusual Fused Tricyclic \hat{l}^2 -Lactam Structures via Aza-Cycloadditions/Ring Closing Metathesis. Journal of Organic Chemistry, 2003, 68, 1426-1432.	1.7	38
79	Metal-assisted synthesis of enantiopure spirocyclic \hat{l}^2 -lactams from azetidine-2,3-diones. Tetrahedron Letters, 2004, 45, 6429-6431.	0.7	38
80	Chemo―and Regioselective Palladiumâ€Catalyzed Oxycyclization Reactions of Allendiols: Preparation of Five― Six― and Eightâ€Membered Cycles. Chemistry - A European Journal, 2009, 15, 2496-2499.	1.7	37
81	Goldâ€Photoredoxâ€Cocatalyzed Tandem Oxycyclization/Coupling Sequence of Allenols and Diazonium Salts with Visible Light Mediation. Advanced Synthesis and Catalysis, 2017, 359, 2789-2800.	2.1	36
82	Straightforward Asymmetric Entry to Highly Functionalized 3-Substituted 3-Hydroxy-β-lactams via Baylisâ^'Hillman or Bromoallylation Reactions. Journal of Organic Chemistry, 2004, 69, 826-831.	1.7	35
83	Domino metal-free allene- \hat{l}^2 -lactam-based access to functionalized pyrroles. Chemical Communications, 2006, , 2616-2618.	2.2	35
84	Generating Complexity from Simplicity: Pdâ€Catalyzed or Cuâ€Promoted Domino Alkyne Homocoupling/Double [2+2] Allenyne Cycloaddition. Chemistry - A European Journal, 2009, 15, 9987-9989.	1.7	35
85	Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes. Chemical Communications, 2015, 51, 3395-3398.	2.2	35
86	A Novel One-Step Approach for the Preparation of \hat{l}_{\pm} -Amino Acids, \hat{l}_{\pm} -Amino Amides, and Dipeptides from Azetidine-2,3-diones. Chemistry - A European Journal, 2002, 8, 3646.	1.7	33
87	An iminophosphorane-mediated efficient synthesis of the alkaloid leucettamine B of marine origin. Tetrahedron Letters, 1994, 35, 2235-2236.	0.7	32
88	Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2-carbaldehydes and Azetidine-2,3-diones. Application to the Synthesis of \hat{I}^3 -Lactams and \hat{I}^3 -Lactones. Journal of Organic Chemistry, 2013, 78, 10154-10165.	1.7	32
89	Versatile Synthesis of Polyfunctionalized Carbazoles from (3-lodoindol-2-yl)butynols via a Gold-Catalyzed Intramolecular Iodine-Transfer Reaction. ACS Catalysis, 2015, 5, 3417-3421.	5.5	32
90	A gold-catalysed imine–propargylamine cascade sequence: synthesis of 3-substituted-2,5-dimethylpyrazines and the reaction mechanism. Chemical Communications, 2014, 50, 4567-4570.	2.2	31

#	Article	IF	Citations
91	Thermally Induced Isomerization ofcis-1,3,4-Trisubstituted 2-Azetidinones. Journal of Organic Chemistry, 2000, 65, 4453-4455.	1.7	30
92	Novel N1â^'C4 β-Lactam Bond Breakage. Synthesis of Enantiopure α-Alkoxy-γ-keto Acid Derivativesâ€. Organic Letters, 2004, 6, 1765-1767.	2.4	30
93	Diastereoselectivity Enhancement in the 1,3-Cycloaddition of \hat{l}^2 -Lactam Aldehydes. Application to the Synthesis of Enantiopure Indolizidinone Amino Esters. Journal of Organic Chemistry, 2005, 70, 8890-8894.	1.7	30
94	Pd ^{II} â€Catalyzed Domino Heterocyclization/Crossâ€Coupling of αâ€Allenols and αâ€Allenic Esters: Efficient Preparation of Functionalized Butaâ€1,3â€dienyl Dihydrofurans. Chemistry - an Asian Journal, 2008, 3, 1140-1145.	1.7	30
95	Rhodium-Catalyzed Synthesis of 3-Hydroxy-β-lactams via Oxonium Ylide Generation: Three-Component Reaction between Azetidine-2,3-diones, Ethyl Diazoacetate, and Alcohols. Journal of Organic Chemistry, 2009, 74, 8421-8424.	1.7	30
96	Controlled Rearrangement of Lactamâ€Tethered Allenols with Brominating Reagents: A Combined Experimental and Theoretical Study on α†versus βâ€Keto Lactam Formation. Chemistry - A European Journal, 2011, 17, 11559-11566.	1.7	30
97	Striking Alkenol Versus Allenol Reactivity: Metalâ€Catalyzed Chemodifferentiating Oxycyclization of Enallenols. Chemistry - A European Journal, 2011, 17, 15005-15013.	1.7	30
98	Asymmetric synthesis of densely functionalized 3-substituted 3-hydroxy-β-lactams via novel, highly stereoselective Baylis-Hillman and allylation reactions of enantiopure 3-oxo-2-azetidinones. Tetrahedron Letters, 1999, 40, 7537-7540.	0.7	29
99	Gold-catalyzed heterocyclizations in alkynyl- and allenyl- \hat{l}^2 -lactams. Beilstein Journal of Organic Chemistry, 2011, 7, 622-630.	1.3	29
100	Regio- and Diastereoselective Synthesis of \hat{l}^2 -Lactam-Triazole Hybrids <i>via</i> Passerini/CuAAC Sequence. Journal of Organic Chemistry, 2012, 77, 6917-6928.	1.7	29
101	Stereocontrolled Access to Orthogonally Protected anti,anti-4-Aminopiperidine-3,5-diols through Chemoselective Reduction of Enantiopure β-Lactam Cyanohydrins. Journal of Organic Chemistry, 2007, 72, 7980-7991.	1.7	28
102	Stereoselective NaN3-catalyzed halonitroaldol-type reaction of azetidine-2,3-diones in aqueous media. Organic and Biomolecular Chemistry, 2008, 6, 1635.	1.5	28
103	Ring Enlargement versus Selenoetherification on the Reaction of Allenyl Oxindoles with Selenenylating Reagents. Journal of Organic Chemistry, 2012, 77, 3549-3556.	1.7	28
104	Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones. Beilstein Journal of Organic Chemistry, 2013, 9, 818-826.	1.3	28
105	Direct Metalâ€Free Entry to Aminocyclobutenes or Aminocyclobutenols from Ynamides: Synthetic Applications. Chemistry - A European Journal, 2016, 22, 8998-9005.	1.7	28
106	Fused carbazoles by tandem Aza Wittig/electrocyclic ring closure. Preparation of 6H-pyrido[4,3-b] carbazole, 11H-pyrido[4,3-a]carbazole and 11H-pyrido[3,4-a]carbazole derivatives. Tetrahedron, 1993, 49, 1223-1236.	1.0	27
107	General and efficient synthesis of \hat{l}^2 -lactams bearing a quinone moiety at N1, C3 or C4 positions. Tetrahedron Letters, 2001, 42, 1503-1505.	0.7	26
108	Palladium-catalyzed carbocyclization–cross-coupling reactions of two different allenic moieties: synthesis of 3-(buta-1,3-dienyl) carbazoles and mechanistic insights. Chemical Communications, 2012, 48, 6604.	2.2	26

#	Article	IF	CITATIONS
109	A simple and general entry to Aplysinopsine- type alkaloids by tandem Aza-Wittig/heterocumulene-mediated annelation Tetrahedron Letters, 1992, 33, 4491-4494.	0.7	25
110	New synthesis of fused tricyclic 2-azetidinones using stereoselective allylation of cis-4-formyl-β-lactams and intramolecular Diels-Alder reaction. Tetrahedron Letters, 1999, 40, 1015-1018.	0.7	25
111	Lewis Acid-Promoted Intermolecular Carbonyl-ene Reaction of Enantiopure 4-Oxoazetidine-2-carbaldehydes. Rapid Entry to Novel Fused Polycyclic Î ² -Lactams. Journal of Organic Chemistry, 2003, 68, 3106-3111.	1.7	25
112	Synthesis of fused or not β-lactam-biaryl hybrids by free radical aryl–aryl coupling of 2-azetidinone-tethered haloarenes. Tetrahedron, 2005, 61, 7894-7906.	1.0	25
113	Metal atalyzed Cycloisomerization and Tandem Oxycyclization/Hydroxylation of Alkynols: Synthesis of Nonfused, Spiranic and Fused Oxabicyclic Î²â€Łactams. European Journal of Organic Chemistry, 2010, 2010, 4912-4919.	1.2	25
114	Metal-free [3+2] cycloaddition of azides with Tf ₂ Cî€CH ₂ for the regioselective preparation of elusive 4-(trifluoromethylsulfonyl)-1,2,3-triazoles. Chemical Communications, 2015, 51, 6992-6995.	2.2	25
115	New domino transposition/intramolecular Diels–Alder reaction in monocyclic allenols: a general strategy for tricyclic compounds. Chemical Communications, 2002, , 1472-1473.	2.2	24
116	Scandiumâ€Catalyzed Preparation of Cytotoxic 3â€Functionalized Quinolinâ€2â€ones: Regioselective Ring Enlargement of Isatins or Imino Isatins. ChemPlusChem, 2012, 77, 563-569.	1.3	24
117	Divergence in Ynone Reactivity: Atypical Cyclization by 3,4â€Difunctionalization versus Rare Bis(cyclization). Chemistry - A European Journal, 2018, 24, 8186-8194.	1.7	24
118	Visible-Light-Mediated Ru-Catalyzed Synthesis of 3-(Arylsulfonyl)but-3-enals via Coupling of α-Allenols with Diazonium Salts and Sulfur Dioxide. Organic Letters, 2020, 22, 9490-9494.	2.4	24
119	Gold-Catalyzed Reactivity Reversal of Indolizidinone-Tethered \hat{l}^2 -Amino Allenes Controlled by the Stereochemistry. ACS Catalysis, 2015, 5, 4842-4845.	5.5	23
120	Regioselective Synthesis of Heteroatomâ€Functionalized Cyclobuteneâ€triflones and Cyclobutenones. Advanced Synthesis and Catalysis, 2017, 359, 2630-2639.	2.1	23
121	1,3-Dipolar cycloaddition of 2-azetidinone-tethered azomethine ylides. Application to the rapid, stereocontrolled synthesis of optically pure highly functionalised pyrrolizidine systems. Chemical Communications, 2000, , 485-486.	2.2	22
122	Free radical synthesis of benzofused tricyclic \hat{l}^2 -lactams by intramolecular cyclization of 2-azetidinone-tethered haloarenes. Tetrahedron, 2005, 61, 2767-2778.	1.0	22
123	Gold/Acidâ€Coâ€catalyzed Direct Microwaveâ€Assisted Synthesis of Fused Azaheterocycles from Propargylic Hydroperoxides. Chemistry - A European Journal, 2014, 20, 3384-3393.	1.7	22
124	Dual Behavior of 2-Azetidinone-Tethered Arylimines as Azadienophiles or Azadienes. Application to the Asymmetric Synthesis of Indolizidine-Type Systems. Synlett, 2001, 2001, 1531-1534.	1.0	21
125	Expeditious Entry to Enantiopure Mono―and Bis(Tricyclic) βâ€Lactams by Single or Double [2+2] Cycloaddition of Allenynes. European Journal of Organic Chemistry, 2011, 2011, 364-370.	1.2	21
126	lodine recycling via 1,3-migration in iodoindoles under metal catalysis. Chemical Communications, 2013, 49, 7779.	2.2	21

#	Article	IF	CITATIONS
127	Stereoselective cyanation of 4-formyl and 4-imino-?-lactams: application to the synthesis of polyfunctionalized ?-lactams. Tetrahedron, 2012, 68, 10761-10768.	1.0	20
128	Gold-catalyzed direct cycloketalization of acetonide-tethered alkynes in the presence of water. Tetrahedron, 2012, 68, 9391-9396.	1.0	20
129	Gold as Catalyst for the Hydroarylation and Domino Hydroarylation/N1–C4 Cleavage of β-Lactam-Tethered Allenyl Indoles. Journal of Organic Chemistry, 2015, 80, 4650-4660.	1.7	20
130	Synthesis of Novel Enantiopure 4-Hydroxypipecolic Acid Derivatives with a Bicyclic Î ² -Lactam Structure from a Common 3-Azido-4-oxoazetidine-2-carbaldehyde Precursor. Journal of Organic Chemistry, 2008, 73, 1635-1638.	1.7	19
131	Heterocyclization of Allenes Catalyzed by Late Transition Metals: Mechanisms and Regioselectivity. Topics in Current Chemistry, 2011, 302, 183-224.	4.0	19
132	Gold-catalyzed bis-cyclization of 1,2-diol- or acetonide-tethered alkynes. Synthesis of ?-lactam-bridged acetals: a combined experimental and theoretical study. Tetrahedron, 2012, 68, 10748-10760.	1.0	19
133	Platinumâ€Catalyzed Divergent Reactivity of αâ€Hydroxyallenes: Synthesis of Dihydrofurans and α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2013, 355, 2681-2685.	2.1	19
134	Synthesis of Fused- \hat{l}^2 -Lactams through Selective Gold-Catalyzed Oxycyclization of Dioxolane-Tethered Enynes. Journal of Organic Chemistry, 2013, 78, 8956-8965.	1.7	19
135	Iron-catalyzed domino indole fluorination/allenic aza-Claisen rearrangement. Chemical Communications, 2016, 52, 6813-6816.	2.2	19
136	Iminophosphorane-mediated synthesis of fused carbazoles. A facile one-pot preparation of 7H-pyrido [4,3-c]carbazole and 10H-pyrido[3,4-b]carbazole derivatives Tetrahedron, 1991, 47, 4175-4186.	1.0	18
137	New Aspects of the Indium Chemistryof Carbonyl- \hat{l}^2 -lactams. Synthesis, 2003, 2003, 1163-1170.	1.2	18
138	Unusual reaction of azetidine-2,3-diones with primary amines. Straightforward asymmetric synthesis of \hat{l}_{\pm} -amino acid and peptide derivatives. Chemical Communications, 2000, , 757-758.	2.2	17
139	Novel Aspects on the Preparation of Spirocyclic and Fused Unusual \hat{l}^2 -Lactams. Topics in Heterocyclic Chemistry, 2010, , 1-48.	0.2	17
140	Synthesis of Functionalized Azetidines through Chemoselective Zinc atalyzed Reduction of βâ€Lactams with Silanes. Advanced Synthesis and Catalysis, 2013, 355, 2089-2094.	2.1	17
141	Metal-catalyzed rearrangements of 3-allenyl 3-hydroxyindolin-2-ones in the presence of halogenated reagents. Organic and Biomolecular Chemistry, 2013, 11, 1216.	1.5	17
142	Novel achievements with an old metal: copper-promoted synthesis of four-membered azacycles. RSC Advances, 2014, 4, 1689-1707.	1.7	17
143	An Alternative to Precious Metals: $Hg(ClO < sub > 4 < / sub > 2 < / sub > \hat{A} \cdot 3H < sub > 2 < / sub > O$ as a Cheap and Water-Tolerant Catalyst for the Cycloisomerization of Allenols. Journal of Organic Chemistry, 2015, 80, 7050-7057.	1.7	17
144	Synthesis of Novel Bis(βâ€lactam)â€1,3â€diynes by Copperâ€Promoted Homo†or Crossâ€Coupling of Alkynylâ€2â€azetidinones. European Journal of Organic Chemistry, 2008, 2008, 1575-1581.	1.2	16

#	Article	IF	CITATIONS
145	Direct allenol-based stereocontrolled access to substituted (E)-1,3-enynes. Organic and Biomolecular Chemistry, 2012, 10, 7603.	1.5	16
146	Gallium-Catalyzed Domino Arylation/Oxycyclization of Allenes with Phenols. Journal of Organic Chemistry, 2015, 80, 4157-4163.	1.7	16
147	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2011, , 85-107.	0.5	15
148	Divergent Reactivity of Homologue <i>ortho</i> â€Allenylbenzaldehydes Controlled by the Tether Length: Chromone versus Chromene Formation. Chemistry - A European Journal, 2015, 21, 1533-1541.	1.7	15
149	Palladium Nanoparticles in Water: A Reusable Catalytic System for the Cycloetherification or Benzannulation of αâ€Allenols. Advanced Synthesis and Catalysis, 2016, 358, 2000-2006.	2.1	15
150	Antimicrobial, Anticancer and Multidrug-Resistant Reversing Activity of Novel Oxygen-, Sulfur- and Selenoflavones and Bioisosteric Analogues. Pharmaceuticals, 2020, 13, 453.	1.7	15
151	An Efficient Synthesis of Highly Functionalised 4-Substituted 2-Azetidinones by a Stereoselective Intermolecular Dielsâ^'Alder Reaction of Different Types of 2-Azetidinone-Tethered Dienes. European Journal of Organic Chemistry, 2001, 2001, 2001-2009.	1.2	14
152	N1–C4 β-Lactam Bond Cleavage in the 2-(Trimethylsilyl)thiazole Addition to β-Lactam Aldehydes: Asymmetric Synthesis of Spiranic and Tertiary α-Alkoxy-γ-keto Acid Derivatives. European Journal of Organic Chemistry, 2007, 2007, 3707-3710.	1.2	14
153	Organocatalytic direct aldol and nitroaldol reactions between azetidine-2,3-diones and ketones or nitromethane. Tetrahedron, 2007, 63, 3102-3107.	1.0	14
154	I2-Catalyzed enantioselective ring expansion of β-lactams to γ-lactams through a novel C3–C4 bond cleavage. Direct entry to protected 3,4-dihydroxypyrrolidin-2-one derivatives. Chemical Communications, 2008, , 615-617.	2.2	14
155	Direct FeX ₃ -Based Stereocontrolled Access to (<i>Z</i>)-3-Alkenyl-oxindoles from Allenols. Journal of Organic Chemistry, 2012, 77, 11388-11392.	1.7	14
156	Three-Step Metal-Promoted Allene-Based Preparation of Bis(heterocyclic) Cyclophanes from Carbonyl Compounds. Journal of Organic Chemistry, 2014, 79, 6244-6255.	1.7	14
157	A Versatile Synthesis of βâ€Lactamâ€Fused Oxacycles through the Palladiumâ€Catalyzed Chemoâ€, Regioâ€, and Diastereoselective Cyclization of Allenic Diols. Chemistry - A European Journal, 2015, 21, 2200-2213.	1.7	14
158	Iminophosphorane-mediated synthesis of the genotoxic heterocyclic amine Trp-P-2 Tetrahedron Letters, 1993, 34, 4701-4704.	0.7	13
159	Cationic Au ^{III} versus Au ^I : Catalystâ€Controlled Divergent Reactivity of Alkyneâ€Tethered Lactams. Chemistry - A European Journal, 2017, 23, 3012-3015.	1.7	13
160	Synthesis and Characterization of Stable Phosphorus Carbabetaines. Chemistry - an Asian Journal, 2018, 13, 1956-1961.	1.7	13
161	Unusual Fused Tricyclic 2-Azetidinones: Stereocontrolled Synthesis of Rigid Dipeptide Surrogates from \hat{l}^2 -Lactam-Tethered Imines via Sequential Cycloaddition/Ring-Closing Metathesis. Synlett, 2001, 2001, 0773-0776.	1.0	12
162	Direct Synthesis of Protected Enantiopure 5-Cyano-3,4-dihydroxypyrrolidin-2-ones from \hat{l}^2 -Lactam Aldehydes Catalyzed by Iodine. Synthesis, 2008, 2008, 2835-2839.	1.2	12

#	Article	IF	Citations
163	Tunable Metal-Catalyzed Heterocyclization Reactions of Allenic Amino Alcohols: An Experimental and Theoretical Study. Journal of Organic Chemistry, 2016, 81, 7362-7372.	1.7	12
164	Metalâ€Free Alleneâ€Based Synthesis of Enantiopure Fused Polycyclic Sultones. Chemistry - A European Journal, 2016, 22, 285-294.	1.7	12
165	Oxidative selenofunctionalization of allenes: convenient access to 2-(phenylselanyl)-but-2-enals and 4-oxo-3-(phenylselanyl)pent-2-enoates. Organic Chemistry Frontiers, 2019, 6, 2447-2451.	2.3	12
166	Stereoselective Entry to Bicyclic \hat{l}^2 -Lactams via Free Radical Cyclization of 2-Azetidinone-Tethered Bromohomoallylic Alcohols. Synthesis, 2005, 2005, 2335-2340.	1.2	11
167	Chemoselective Deprotection of Allylic Amines Catalyzed by Grubbs' Carbene. Synthesis, 2005, 2005, 668-672.	1.2	11
168	Lewis Acidâ€Assisted Ene Cyclization of 2â€Azetidinoneâ€Tethered Enals: Synthesis of Enantiopure Carbacepham Derivatives. Chemistry - an Asian Journal, 2009, 4, 1604-1611.	1.7	11
169	Controlled Heterocyclization/Crossâ€Coupling Domino Reaction of β,γâ€Allendiols and αâ€Allenic Esters: Method and Mechanistic Insight for the Preparation of Functionalized Butaâ€1,3â€dienyl Dihydropyrans. Chemistry - A European Journal, 2013, 19, 14233-14244.	1.7	11
170	Microwave-Promoted Synthesis of Bicyclic Azocine-β-Lactams from Bis(allenes). Journal of Organic Chemistry, 2014, 79, 7075-7083.	1.7	11
171	Investigation of the Passerini and Ugi reactions in \hat{l}^2 -lactam aldehydes. Synthetic applications. Organic and Biomolecular Chemistry, 2015, 13, 1387-1394.	1.5	11
172	Allenols versus Allenones: Rhodiumâ€Catalyzed Regiodivergent and Tunable Allene Reactivity with Triazoles. Chemistry - A European Journal, 2017, 23, 13754-13759.	1.7	11
173	A Facile Synthesis of Blue Luminescent [7]Helicenocarbazoles Based on Goldâ€Catalyzed Rearrangementâ€lodonium Migration and Suzuki–Miyaura Benzannulation Reactions. Chemistry - A European Journal, 2018, 24, 7620-7625.	1.7	11
174	Indiumâ€Promoted Acyloxyallylation Reaction of Azetidineâ€2,3â€diones in Aqueous Media: A New Route to Densely Functionalized 3â€Substituted 3â€Hydroxyâ€Î²â€lactams. European Journal of Organic Chemistry, 2008, 2008, 4434-4439.	1.2	10
175	Synthesis of Fused Cyclopentenones through Palladiumâ€Catalyzed Cyclization of 2â€lodoaryl Allenols. Advanced Synthesis and Catalysis, 2014, 356, 1370-1374.	2.1	10
176	Gold-catalyzed reaction of alkynes with diazonium salts under photoirradiation revisited: New alkoxyarylation variant leading to enol ethers. Journal of Catalysis, 2020, 391, 48-55.	3.1	10
177	Trifluorosulfonylation Cascade in Allenols: Stereocontrolled Synthesis of Bis(triflyl)enones. Chemistry - A European Journal, 2020, 26, 8983-8989.	1.7	10
178	Intramolecular 1,3-dipolar cycloaddition reaction of novel 2-azetidinone-tethered alkenyl nitrile oxides. Arkivoc, 2004, 2004, 137-152.	0.3	10
179	On the stereoselectivity of reactions of alkoxyallylstannanes and alkoxy aldehydes. Journal of the Chemical Society Perkin Transactions $1,1997,2561-2568.$	0.9	9
180	Convenient Access to 2,3â€Disubstitutedâ€cyclobutâ€2â€enâ€1â€ones under Suzuki Conditions and Their Synth Utility. Chemistry - A European Journal, 2019, 25, 7547-7552.	etic 1.7	9

#	Article	IF	CITATIONS
181	Chemoselectivity Switching in the Rhodiumâ€Catalyzed Reactions of 4â€Substitutedâ€1â€sulfonylâ€1,2,3â€triaz with Allenols: Noticeable Differences between 4â€Acylâ€and 4â€Arylâ€Triazoles. Advanced Synthesis and Catalysis, 2019, 361, 1160-1165.	oles 2.1	9
182	A catalyst-free bis(triflyl)ethylation/benzannulation reaction: rapid access to carbazole-based superacidic carbon acids from alkynols. Chemical Communications, 2020, 56, 1795-1798.	2.2	9
183	Organoseleno-Catalyzed Synthesis of α,β-Unsaturated α′-Alkoxy Ketones from Allenes Enabled by Se···O Interactions. Organic Letters, 2020, 22, 3979-3984.	2.4	9
184	Synthesis of a New Class of <i>C</i> ₂ â€Symmetrical Biheteroaryls by Ammonium Cerium(IV) Nitrate Mediated Dimerization of 2â€(Furanâ€3â€yl)pyrroles. European Journal of Organic Chemistry, 2010, 2010, 823-826.	1.2	8
185	Acidâ€Catalyzed Synthesis of α,βâ€Disubstituted Conjugated Enones by a Meyer–Schusterâ€Type Rearrangem in Allenols. Advanced Synthesis and Catalysis, 2015, 357, 1070-1078.	ent 2.I	8
186	Alleneâ€Based Goldâ€Catalyzed Stereodivergent Synthesis of Azapolycyclic Derivatives of Unusual Structure. Advanced Synthesis and Catalysis, 2016, 358, 1469-1477.	2.1	8
187	Transition metal-free controlled synthesis of bis[(trifluoromethyl)sulfonyl]ethyl-decorated heterocycles. Organic Chemistry Frontiers, 2018, 5, 3163-3169.	2.3	8
188	Metalâ€Catalyzed Reactivity Reversal in the Sulfonylation Reaction of αâ€Allenols: Controlled Synthesis of 4â€(Arylsulfonyl)â€2,5â€Dihydrofurans. Advanced Synthesis and Catalysis, 2021, 363, 3952-3956.	2.1	8
189	Synthesis of Polycyclic Aromatic Hydrocarbons Decorated by Fluorinated Carbon Acids/Carbanions. Chemistry - A European Journal, 2021, 27, 16112-16116.	1.7	8
190	Chapter 4.2 Four-membered ring systems. Progress in Heterocyclic Chemistry, 2003, 15, 100-115.	0.5	7
191	Highly Stereoselective Metalâ€Mediated Entry to Functionalized Tetrahydrothiophenes by Barbierâ€Type Carbonylâ€Addition Reactions. European Journal of Organic Chemistry, 2008, 2008, 2628-2634.	1.2	7
192	Metalâ€Catalyzed Cyclization Reactions of 2,3,4â€Trienâ€1â€ols: A Joint Experimental–Computational Study. Chemistry - A European Journal, 2016, 22, 11667-11676.	1.7	7
193	Stereoselective synthesis of strained cage compounds via gold-catalyzed allene functionalization. Chemical Communications, 2016, 52, 10265-10268.	2.2	6
194	Gold-catalyzed preparation of annelated 2-azetidinones via divergent heterocyclization of enyne-tethered oxazolidines. Organic Chemistry Frontiers, 2018, 5, 817-821.	2.3	6
195	Goldâ€Catalyzed Divergent Ringâ€Closing Modes of Indoleâ€Tethered Amino Allenynes. Chemistry - A European Journal, 2018, 24, 1448-1454.	1.7	6
196	AgNO3·SiO2: Convenient AgNPs source for the sustainable hydrofunctionalization of allenyl-indoles using heterogeneous catalysis. Journal of Catalysis, 2020, 389, 432-439.	3.1	6
197	Triflyl-assisted reductive Pd-catalyzed Tsuji–Trost type reaction. Chemical Communications, 2020, 56, 6070-6073.	2.2	6
198	Four-membered ring systems. Progress in Heterocyclic Chemistry, 2005, , 64-83.	0.5	5

#	Article	IF	CITATIONS
199	De Novo Synthesis of αâ€Hydroxy Ketones by Gallic Acidâ€Promoted Aerobic Coupling of Terminal Alkynes with Diazonium Salts. Chemistry - A European Journal, 2017, 23, 17227-17230.	1.7	5
200	Chapter 4: Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2009, , 74-93.	0.5	4
201	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2011, 23, 101-125.	0.5	4
202	Chapter 4 Four-membered ring systems. Progress in Heterocyclic Chemistry, 2005, 16, 82-97.	0.5	3
203	Synthesis of Five-Membered Heterocycles Through \hat{I}^2 -Lactam Ring-Expansion Reaction. , 2017, , 163-218.		3
204	Metal-Free C–C/C–N/C–C Bond Formation Cascade for the Synthesis of (Trifluoromethyl)sulfonylated Cyclopenta[<i>b</i>]indolines. Organic Letters, 2021, 23, 2921-2926.	2.4	3
205	Four-membered ring systems. Progress in Heterocyclic Chemistry, 2007, , 106-125.	0.5	2
206	Chapter 4: Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2009, , 94-114.	0.5	2
207	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2012, 24, 115-137.	0.5	2
208	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2013, 25, 71-96.	0.5	2
209	Transition metal-free cyclobutene rearrangement in fused naphthalen-1-ones: controlled access to functionalized quinones. Chemical Communications, 2020, 56, 1290-1293.	2.2	2
210	A Convenient Formal [4+2] Heterocylization Route to Bis(triflyl)tetrahydroquinolines. Chemistry - A European Journal, 2021, 27, 13534-13538.	1.7	2
211	Palladiumâ€Catalyzed Hydroarylation of Homopropargyl Iodoindoles with Concurrent Alkyl and Iodonium Migrations. Advanced Synthesis and Catalysis, 2021, 363, 1449-1456.	2.1	2
212	Chapter 4 Four-membered ring systems. Progress in Heterocyclic Chemistry, 2008, 19, 92-111.	0.5	1
213	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2014, , 85-113.	0.5	1
214	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2015, 27, 87-115.	0.5	1
215	Ring Expansions of \hat{l}^2 -Lactams and \hat{l}^2 -(thio)lactones. Topics in Heterocyclic Chemistry, 2015, , 233-280.	0.2	1
216	Pd-catalyzed C(sp3)–C(sp) bond formation in iodocyclobutenes. Chemical Communications, 2021, 57, 8456-8459.	2.2	1

#	Article	lF	CITATIONS
217	Efficient Entry to Highly Functionalized \hat{l}^2 -Lactams by Regio- and Stereoselective 1,3-Dipolar Cycloaddition Reaction of 2-Azetidinone-Tethered Nitrones. Synthetic Applications ChemInform, 2003, 34, no.	0.1	0
218	The Direct Catalytic Asymmetric Cross-Aldol Reaction of Aldehydes ChemInform, 2003, 34, no.	0.1	0
219	Asymmetric Synthesis of Unusual Fused Tricyclic β-Lactam Structures via Aza-Cycloadditions/Ring Closing Metathesis ChemInform, 2003, 34, no.	0.1	0
220	Non-Metathetic Behavior Patterns of Grubbs′ Carbene. ChemInform, 2003, 34, no.	0.1	0
221	Lewis Acid-Promoted Intermolecular Carbonyl-ene Reaction of Enantiopure 4-Oxoazetidine-2-carbaldehydes. Rapid Entry to Novel Fused Polycyclic Î ² -Lactams ChemInform, 2003, 34, no.	0.1	0
222	Useful Dual Diels—Alder Behavior of 2-Azetidinone-Tethered Aryl Imines as Azadienophiles or Azadienes: A β-Lactam-Based Stereocontrolled Access to Optically Pure Highly Functionalized Indolizidine Systems ChemInform, 2003, 34, no.	0.1	0
223	Structurally Novel Bi- and Tricyclic \hat{l}^2 -Lactams via $[2+2]$ Cycloaddition or Radical Reactions in 2-Azetidinone-Tethered Enallenes and Allenynes ChemInform, 2004, 35, no.	0.1	0
224	Novel Ruthenium-Catalyzed Cleavage of Allyl Protecting Group in Lactams ChemInform, 2004, 35, no.	0.1	0
225	Ruthenium-Catalyzed Chemoselective N-Allyl Cleavage: Novel Grubbs′ Carbene Mediated Deprotection of Allylic Amines ChemInform, 2004, 35, no.	0.1	0
226	Synthesis of Optically Pure Highly Functionalized \hat{I}^3 -Lactams via 2-Azetidinone-Tethered Iminophosphoranes ChemInform, 2004, 35, no.	0.1	0
227	Straightforward Asymmetric Entry to Highly Functionalized 3-Substituted 3-Hydroxy-β-lactams via Baylis—Hillman or Bromoallylation Reactions ChemInform, 2004, 35, no.	0.1	0
228	Novel N1â€"C4 β-Lactam Bond Breakage. Synthesis of Enantiopure α-Alkoxy-γ-keto Acid Derivatives ChemInform, 2004, 35, no.	0.1	0
229	The Allenic Pauson—Khand Reaction in Synthesis. ChemInform, 2004, 35, no.	0.1	0
230	Metal-Assisted Synthesis of Enantiopure Spirocyclic \hat{l}^2 -Lactams from Azetidine-2,3-diones ChemInform, 2004, 35, no.	0.1	0
231	Four-Membered Ring Systems. ChemInform, 2004, 35, no.	0.1	0
232	Stereoselective Synthesis of 1,2,3-Trisubstituted 1,3-Dienes Through Novel [3,3]-Sigmatropic Rearrangements in ?-Allenic Methanesulfonates: Application to the Preparation of Fused Tricyclic Systems by Tandem Rearrangement/Diels?Alder Reaction ChemInform, 2005, 36, no.	0.1	0
233	Stereoselective Synthesis of 1,2,3-Trisubstituted 1,3-Dienes Through Novel [3,3]-Sigmatropic Rearrangements in ?-Allenic Methanesulfonates: Application to the Preparation of Fused Tricyclic Systems by Tandem Rearrangement/Diels?Alder Reaction ChemInform, 2005, 36, no.	0.1	0
234	Free Radical Synthesis of Benzofused Tricyclic \hat{l}^2 -Lactams by Intramolecular Cyclization of 2-Azetidinone-Tethered Haloarenes ChemInform, 2005, 36, no.	0.1	0

#	Article	lF	CITATIONS
235	Novel Carbonyl Bromoallylation/Heck Reaction Sequence. Stereocontrolled Access to Bicyclic \hat{l}^2 -Lactams ChemInform, 2005, 36, no.	0.1	0
236	Metal-Mediated Entry to Functionalized 3-Substituted 3-Hydroxyindolin-2-ones via Regiocontrolled Carbonylallylation, Bromoallylation, 1,3-Butadien-2-ylation, Propargylation, or Allenylation Reactions of Isatins in Aqueous Media ChemInform, 2005, 36, no.	0.1	0
237	Synthesis of Fused or Not β-Lactam-biaryl Hybrids by Free Radical Aryl—Aryl Coupling of 2-Azetidinone-tethered Haloarenes ChemInform, 2005, 36, no.	0.1	O
238	Organocatalytic Ring Expansion of β-Lactams to γ-Lactams Through a Novel N1â€"C4 Bond Cleavage. Direct Synthesis of Enantiopure Succinimide Derivatives ChemInform, 2006, 37, no.	0.1	0
239	Stereoselective Entry to Bicyclic \hat{l}^2 -Lactams via Free Radical Cyclization of 2-Azetidinone-Tethered Bromohomoallylic Alcohols ChemInform, 2006, 37, no.	0.1	0
240	Metal-Mediated Synthesis of Nonaromatic Oxacycles From Allenols. , 2018, , 1-31.		0
241	Solvent-Controlled Switching of Cycloisomerization to Transposition in the Ag/Cu-Promoted Reaction of Terminal α-Allenols. Proceedings (mdpi), 2019, 41, .	0.2	0
242	Zn–Catalyzed Direct Synthesis of 3-Iodo-1,3-dienes from α-Allenols. Chemistry Proceedings, 2020, 3, .	0.1	0