Hai Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/748368/publications.pdf Version: 2024-02-01

ΗΛΙΗΛΟ

#	Article	IF	CITATIONS
1	Grain Refinement of Mg-Al Alloys by a New Al-4.1V-1.7B Refiner Containing Sole VB2 Particles. Journal of Materials Engineering and Performance, 2023, 32, 761-772.	1.2	4
2	Microstructure and mechanical properties of Gd-modified AZ80 magnesium alloys. Rare Metals, 2022, 41, 4194-4200.	3.6	8
3	Enhanced mechanical properties and formability of hot-rolled Mg–Zn–Mn alloy by Ca and Sm alloying. Transactions of Nonferrous Metals Society of China, 2022, 32, 1119-1132.	1.7	8
4	Effect of Deep Cryogenic Treatment on the Microstructure and Wear Resistance of a Novel Nanobainite Steel. Steel Research International, 2021, 92, 2000554.	1.0	4
5	The influence of gadolinium on Al–Ti–C master alloy and its refining effect on AZ31 magnesium alloy. International Journal of Materials Research, 2021, .	0.1	2
6	Effect of ageing treatment on microstructures, mechanical properties and corrosion behavior of Mg-Zn-RE-Zr alloy micro-alloyed with Ca and Sr. China Foundry, 2021, 18, 131-140.	0.5	8
7	Compressive properties and energy absorption behavior of Mg17Al12/Al ordered structure composites. Composites Part B: Engineering, 2021, 210, 108688.	5.9	13
8	Effect of deep cryogenic treatment parameters on martensite multi-level microstructures and properties in a lath martensite/ferrite dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 810, 141022.	2.6	21
9	Microstructure and mechanical properties of bimodal syntactic foams with different size combination and volume fraction of alumina hollow spheres. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141798.	2.6	11
10	Compressive properties of expanded glass and alumina hollow spheres hybrid reinforced aluminum matrix syntactic foams. Journal of Alloys and Compounds, 2020, 821, 153233.	2.8	33
11	Improvement in Mechanical Properties of a Surface-Carburized Ferrite–Martensite Dual-Phase Steel by Intercritical Annealing. Journal of Materials Engineering and Performance, 2020, 29, 7034-7044.	1.2	6
12	The quasi-static axial compressive properties and energy absorption behavior of ex-situ ordered aluminum cellular structure filled tubes. Composite Structures, 2020, 239, 112039.	3.1	14
13	Effects of minor additions of cerium, silicon and calcium on microstructure and mechanical properties of AZ91 magnesium alloy. International Journal of Materials Research, 2020, 111, 220-227.	0.1	0
14	Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes. Composite Structures, 2019, 226, 111197.	3.1	46
15	Microstructure and mechanical properties of AZ91 magnesium alloy with minor additions of Sm, Si and Ca elements. China Foundry, 2019, 16, 319-325.	0.5	18
16	Effect of structure design on compressive properties and energy absorption behavior of ordered porous aluminum prepared by rapid casting. Materials and Design, 2019, 167, 107631.	3.3	29
17	Compressive Properties of Aluminum Matrix Syntactic Foams Prepared by Stir Casting Method. Advanced Engineering Materials, 2019, 21, 1900183.	1.6	30
18	Fabrication of Multiphase Particles and Grain Refinement of Al-Containing Magnesium. Springer Proceedings in Physics, 2019, , 607-614.	0.1	0

ΗΑΙ ΗΑΟ

#	Article	IF	CITATIONS
19	A novel method of indirect rapid prototyping to fabricate the ordered porous aluminum with controllable dimension variation and their properties. Journal of Materials Processing Technology, 2019, 266, 373-380.	3.1	13
20	Determination of boundary condition of a multi-crystalline silicon billet during continuous casting. Inverse Problems in Science and Engineering, 2019, 27, 190-204.	1.2	0
21	Meshing characteristics of geared rotor system in integrally geared compressor with unbalance excitation. JVC/Journal of Vibration and Control, 2019, 25, 26-40.	1.5	2
22	Effects of minor Sr additions on the as-cast microstructure, fluidity and mechanical properties of Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 723, 118-125.	2.6	17
23	Numerical simulation and experimental investigation of a thin-wall magnesium alloy casting based on a rapid prototyping core making method. International Journal of Cast Metals Research, 2018, 31, 37-46.	0.5	7
24	Multi-objective optimization of process parameters during low-pressure die casting of AZ91D magnesium alloy wheel castings. China Foundry, 2018, 15, 327-332.	0.5	8
25	Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy. Entropy, 2018, 20, 960.	1.1	27
26	Fabrication of Al–Si Gasar by mold casting technique. International Journal of Materials Research, 2018, 109, 332-340.	0.1	1
27	Effect of in-situ Al 2 Y particles on the as-cast/as-rolled microstructure and mechanical properties of AZ31 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 27-35.	2.6	29
28	Effect of calcium addition on microstructure, casting fluidity and mechanical properties of Mg-Zn-Ce-Zr magnesium alloy. Journal of Rare Earths, 2017, 35, 503-509.	2.5	13
29	Effect of Al4C3 Particle Size Distribution in a Al–2.5C Master Alloy on the Refining Efficiency of the AZ31 Alloy. Acta Metallurgica Sinica (English Letters), 2017, 30, 505-512.	1.5	7
30	Development of a mathematical model and its application to the stress evolution of a multi-crystalline silicon billet during continuous casting. International Journal of Materials Research, 2016, 107, 790-800.	0.1	3
31	Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy. Journal of Rare Earths, 2016, 34, 632-637.	2.5	32
32	The application of Al–Ti–B preform in Al-free Mg–Zn alloy via the yttrium addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 376-380.	2.6	6
33	Dynamic compressive behaviour of Mg foams manufactured by the direct foaming process. Materials and Design, 2016, 89, 636-641.	3.3	29
34	Grain refining effect of Mg by novel particle cluster-containing Al–Ti–C master alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 1804-1810.	1.7	6
35	The influence of carbon content on Al–Ti–C master alloy prepared by the self-propagating high-temperature synthesis in melt method and its refining effect on AZ31 alloy. Journal of Alloys and Compounds, 2015, 623, 266-273.	2.8	18
36	Effects of precipitates on grain size and mechanical properties of AZ31-x%Nd magnesium alloy. Journal of Rare Earths, 2014, 32, 451-457.	2.5	23

ΗΑΙ ΗΑΟ

#	Article	IF	CITATIONS
37	Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. Journal of Alloys and Compounds, 2014, 617, 207-213.	2.8	106
38	Grain refinement mechanism of Al-5C master alloy in AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 3167-3172.	1.7	16
39	Preparation of closed-cell Mg foams using SiO2-coated CaCO3 as blowing agent in atmosphere. Transactions of Nonferrous Metals Society of China, 2013, 23, 1832-1837.	1.7	19
40	Effects of Nd on microstructure and mechanical properties of as-cast Mg-8Li-3Al alloy. Journal of Rare Earths, 2012, 30, 492-496.	2.5	33
41	Effects of ultrasonic vibration on solidification structure and properties of Mg-8Li-3Al alloy. Transactions of Nonferrous Metals Society of China, 2011, 21, 1241-1246.	1.7	31
42	Microstructure and mechanical properties of forged Al-7.1Zn-1.1Mg-1.6Cu-0.14Zr alloy after two-step ageing treatment at 120 and 170ŰC. Rare Metals, 2010, 29, 433-437.	3.6	5
43	Effect of middle-frequency electromagnetic field on the semi-continuous casting for ZK60 billets. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 449-453.	0.4	2
44	Effects of electromagnetic stirring on microstructure and mechanical properties of super light Mg-Li-Al-Zn alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s388-s392.	1.7	10
45	Effects of trace Zr on the microstructure and properties of 2E12 alloy. Rare Metals, 2009, 28, 511-515.	3.6	2
46	Effects of electromagnetic field on structure and heat treatment behavior of Mg-Li-Al alloys. Transactions of Nonferrous Metals Society of China, 2008, 18, s96-s100.	1.7	4
47	Microstructure and fatigue characteristics of direct chill cast and electromagnetic cast 2024 Al alloy ingots. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 1537-1543.	1.1	4
48	Microstructural Characteristics and Wear Resistance of Electromagnetic Casting Aluminum Alloys. Materials Transactions, 2001, 42, 1952-1958.	0.4	12
49	Microstructure and Compressive Properties of Al/Al ₂ O ₃ Syntactic Foams. Materials Science Forum, 0, 933, 174-181.	0.3	7
50	Integrated Computation and Preparation Optimization of <i>In</i> S <i>itu</i> Ordered Porous Aluminum Filled Tubes. Materials Science Forum, 0, 993, 857-862.	0.3	0
51	Quasi-State Compressive Properties of Functionally Graded Aluminum Matrix Syntactic Foams. Materials Science Forum, 0, 1035, 878-883.	0.3	0