Joey Mead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7483305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IMPROVED ADHESION IN ELASTOMERIC LAMINATES USING ELASTOMER BLENDS. Rubber Chemistry and Technology, 2022, 95, 465-478.	0.6	1
2	Printed planar tunable composite right/ <scp>leftâ€handed leakyâ€wave</scp> antenna based on a tunable <scp>polymerâ€BST</scp> substrate. Microwave and Optical Technology Letters, 2021, 63, 626-637.	0.9	5
3	Evaluating Superhydrophobic Surfaces under External Pressures using Quartz Crystal Microbalance. Langmuir, 2021, 37, 6650-6659.	1.6	7
4	The effect of superhydrophobic surface topography on underwater corrosion resistance of steel. Journal of Coatings Technology Research, 2021, 18, 685-693.	1.2	6
5	Effect of Protein Adsorption on Air Plastron Behavior of a Superhydrophobic Surface. ACS Applied Materials & Interfaces, 2021, 13, 58096-58103.	4.0	11
6	Extrusion of highly filled flexible polymer sheet. Polymer Engineering and Science, 2020, 60, 2782-2792.	1.5	2
7	Electrical Properties Enhancement of Carbon Nanotube Yarns by Cyclic Loading. Molecules, 2020, 25, 4824.	1.7	8
8	Effect of Superhydrophobic Composite Coatings on Drag Reduction in Laminar Flow. ACS Applied Polymer Materials, 2020, 2, 1614-1622.	2.0	29
9	The effect of composite interface morphology on wetting states for nanocomposite superhydrophobic coating. Surface and Coatings Technology, 2020, 387, 125457.	2.2	7
10	Fabrication of Flexible Polymer Molds for Polymer Microstructuring by Roll-to-Roll Hot Embossing. ACS Omega, 2019, 4, 12480-12488.	1.6	19
11	3D-Printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties. Polymers, 2019, 11, 347.	2.0	89
12	Continuous manufacturing of reentrant structures via rollâ€toâ€roll process. Journal of Applied Polymer Science, 2019, 136, 46980.	1.3	11
13	Refractive index matching for high light transmission composite systems. Journal of Composite Materials, 2018, 52, 3299-3307.	1.2	14
14	The effects of recycling on the structure and properties of carbon nanotubeâ€filled polycarbonate. Polymer Engineering and Science, 2018, 58, 1278-1284.	1.5	8
15	913â€Nanoparticle emission during cutting operation of carbon nanotube reinforced polycarbonate composites and recycling effect. , 2018, , .		0
16	The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings. Nanotechnology, Science and Applications, 2017, Volume 10, 53-68.	4.6	15
17	Printed tunable frequency selective surface on a developed flexible functionalized ceramic-polymer based substrate. , 2016, , .		2
18	End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 2016, 3, 1293-1305.	2.2	31

JOEY MEAD

#	Article	IF	CITATIONS
19	The effects of recycling on the properties of carbon nanotube-filled polypropylene composites and worker exposures. Environmental Science: Nano, 2016, 3, 409-417.	2.2	27
20	INJECTION MOLDING OF THERMOPLASTIC ELASTOMERS FOR MICROSTRUCTURED SUBSTRATES. Rubber Chemistry and Technology, 2014, 87, 629-646.	0.6	7
21	Pyridine modified polyethylene copolymer compatibilizer for melt blended carbon nanotube composites: effects of chain structure and matrix viscosity. Polymers for Advanced Technologies, 2014, 25, 1509-1514.	1.6	1
22	Pyridineâ€Modified Polymer as a Nonâ€Covalent Compatibilizer for Multiâ€Walled CNT/Poly[ethylene <i>â€coâ€</i> (methacrylic acid)] Composites Fabricated by Direct Melt Mixing. Macromolecular Materials and Engineering, 2013, 298, 419-428.	1.7	7
23	Nanomanufacturing and sustainability: opportunities and challenges. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	15
24	Hierarchical Structures Composed of Confined Carbon Nanotubes in Cocontinuous Ternary Polymer Blends. Macromolecules, 2013, 46, 1851-1859.	2.2	53
25	Evidences for π-interactions between pyridine modified copolymer and carbon nanotubes and its role as a compatibilizer in poly(methyl methacrylate) composites. Composites Science and Technology, 2013, 79, 133-139.	3.8	20
26	Passive wireless displacement sensor based on RFID technology. Sensors and Actuators A: Physical, 2013, 190, 197-202.	2.0	29
27	Tin assisted transfer of electroplated metal nanostructures and its application in flexible chiral metamaterials. Microelectronic Engineering, 2013, 107, 42-49.	1.1	3
28	Directed assembly of conducting polymers on sub-micron templates by electrical fields. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 190-201.	1.7	3
29	PREPARATION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/CLAY NANOCOMPOSITES BY USING LIQUID RUBBER/CLAY MASTER BATCHES. Rubber Chemistry and Technology, 2013, 86, 96-108.	0.6	8
30	Nanomanufacturing and sustainability: opportunities and challenges. , 2013, , 331-336.		3
31	Precise Pattern Replication of Polymer Blends into Nonuniform Geometries via Reducing Interfacial Tension between Two Polymers. Langmuir, 2012, 28, 10238-10245.	1.6	7
32	Enhanced protein binding on femtosecond laser ablated poly(methyl methacrylate) surfaces. Applied Physics Letters, 2011, 98, 171101.	1.5	9
33	Verification of numerical simulation of the self-assembly of polymer-polymer-solvent ternary blends on a heterogeneously functionalized substrate. Polymer, 2011, 52, 1447-1457.	1.8	10
34	THE EFFECT OF MIXED FILLER SIZES ON THE FIBER DIAMETER OF ELECTROSPUN BUTYL RUBBER FORMULATIONS. Rubber Chemistry and Technology, 2010, 83, 349-357.	0.6	0
35	Controlling Fiber Repulsion in Multijet Electrospinning for Higher Throughput. Macromolecular Materials and Engineering, 2010, 295, 701-708.	1.7	54
36	Numerical simulation of the selfâ€assembly of a polymer–polymer–solvent ternary system on a heterogeneously functionalized substrate. Polymer Engineering and Science, 2010, 50, 2329-2339.	1.5	4

JOEY MEAD

#	Article	IF	CITATIONS
37	HALOGEN-FREE FLAME RETARDANTS FOR WIRE AND CABLE APPLICATIONS. Rubber Chemistry and Technology, 2010, 83, 282-302.	0.6	9
38	Effect of Spin Speed and Solution Concentration on the Directed Assembly of Polymer Blends. Macromolecules, 2010, 43, 9747-9753.	2.2	28
39	Directed Assembly of Polymer Blends Using Nanopatterned Templates. Advanced Materials, 2009, 21, 794-798.	11.1	30
40	Antibody orientation enhanced by selective polymer–protein noncovalent interactions. Analytical and Bioanalytical Chemistry, 2009, 393, 1531-1538.	1.9	24
41	Multiscale Directed Assembly of Polymer Blends Using Chemically Functionalized Nanoscaleâ€₽atterned Templates. Small, 2009, 5, 2788-2791.	5.2	13
42	Surface morphology alignment of block copolymers induced by injection molding. Polymer, 2009, 50, 5837-5845.	1.8	14
43	Numerical simulation of phase separation of immiscible polymer blends on a heterogeneously functionalized substrate. Journal of Chemical Physics, 2008, 128, 224909.	1.2	17
44	Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Applied Physics Letters, 2007, 91, 063101.	1.5	46
45	Properties and Dispersion of EPDM/Modified-Organoclay Nanocomposites. Macromolecular Materials and Engineering, 2007, 292, 329-338.	1.7	44
46	Microscopic measurement of the degree of mixing for nanoparticles in polymer nanocomposites by TEM images. Microscopy Research and Technique, 2007, 70, 539-546.	1.2	55
47	Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites. Polymer Engineering and Science, 2007, 47, 2049-2056.	1.5	36
48	Multiscale Processing of Polymers and Nanocomposites. , 2007, , 30-1-30-32.		0
49	Core-Sheath Structure in Electrospun Nanofibers from Polymer Blends. Macromolecular Materials and Engineering, 2006, 291, 1307-1314.	1.7	118
50	Fabrication of Patterned Conducting Polymers on Insulating Polymeric Substrates by Electric-Field-Assisted Assembly and Pattern Transfer. Macromolecular Rapid Communications, 2006, 27, 1826-1832.	2.0	9
51	Nanomanufacturing Processes Using Polymeric Materials. , 2006, , 313-350.		0
52	Preparation of Core-Sheath Nanofibers from Conducting Polymer Blends. Macromolecular Rapid Communications, 2005, 26, 1127-1132.	2.0	145
53	Heat Resistant Elastomers. Rubber Chemistry and Technology, 2005, 78, 489-515.	0.6	17
54	Large Strain Viscoelastic Constitutive Models for Rubber, Part II: Determination of Material Constants. Rubber Chemistry and Technology, 1995, 68, 230-247.	0.6	20

#	Article	IF	CITATIONS
55	Nonlinear response and thermomechanochemical degradation of a urethane elastomer. Polymer Engineering and Science, 1987, 27, 131-140.	1.5	9