
Sandra Rother

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7483258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor. Acta Biomaterialia, 2019, 86, 135-147.	4.1	113
2	Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application – The role of chondroitin sulfate and sulfated hyaluronan. Materials Science and Engineering C, 2017, 79, 15-22.	3.8	60
3	Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling. Nature Metabolism, 2019, 1, 111-124.	5.1	59
4	Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioactive Materials, 2021, 6, 4342-4359.	8.6	57
5	Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. Biomaterials, 2016, 96, 11-23.	5.7	55
6	Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials. Journal of Materials Science: Materials in Medicine, 2015, 26, 232.	1.7	53
7	Bioinspired Collagen/Glycosaminoglycan-Based Cellular Microenvironments for Tuning Osteoclastogenesis. ACS Applied Materials & Interfaces, 2015, 7, 23787-23797.	4.0	42
8	Nanofibrous artificial skin substitute composed of mPEG–PCL grafted gelatin/hyaluronan/chondroitin sulfate/sericin for 2nd degree burn care: in vitro and in vivo study. RSC Advances, 2018, 8, 16420-16432.	1.7	36
9	Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts. Biomaterials Research, 2019, 23, 26.	3.2	32
10	Structural and functional insights into the interaction of sulfated glycosaminoglycans with tissue inhibitor of metalloproteinase-3 – A possible regulatory role on extracellular matrix homeostasis. Acta Biomaterialia, 2016, 45, 143-154.	4.1	31
11	Sulfated Hyaluronan Derivatives Modulate TGF-β1:Receptor Complex Formation: Possible Consequences for TGF-β1 Signaling. Scientific Reports, 2017, 7, 1210.	1.6	30
12	Chemical Modification of Hyaluronan and Their Biomedical Applications. Frontiers in Chemistry, 2022, 10, 830671.	1.8	30
13	Dual Action of Sulfated Hyaluronan on Angiogenic Processes in Relation to Vascular Endothelial Growth Factor-A. Scientific Reports, 2019, 9, 18143.	1.6	28
14	Role of WNT5A receptors FZD5 and RYK in prostate cancer cells. Oncotarget, 2018, 9, 27293-27304.	0.8	27
15	Hyaluronan/Collagen Hydrogels with Sulfated Hyaluronan for Improved Repair of Vascularized Tissue Tune the Binding of Proteins and Promote Endothelial Cell Growth. Macromolecular Bioscience, 2017, 17, 1700154.	2.1	26
16	Mono(2â€ethylhexyl) phthalate (MEHP) and mono(2â€ethylâ€5â€oxohexyl) phthalate (MEOHP) but not di(2â€ethylhexyl) phthalate (DEHP) bind productively to the peroxisome proliferatorâ€activated receptor γ. Rapid Communications in Mass Spectrometry, 2019, 33, 75-85.	0.7	26
17	Sulfated Hyaluronan Alters Endothelial Cell Activationin Vitroby Controlling the Biological Activity of the Angiogenic Factors Vascular Endothelial Growth Factor-A and Tissue Inhibitor of Metalloproteinase-3. ACS Applied Materials & Interfaces, 2017, 9, 9539-9550.	4.0	23
18	Sulfated Hyaluronan Alters the Interaction Profile of TIMP-3 with the Endocytic Receptor LRP-1 Clusters II and IV and Increases the Extracellular TIMP-3 Level of Human Bone Marrow Stromal Cells. Biomacromolecules, 2016, 17, 3252-3261.	2.6	20

Sandra Rother

#	Article	IF	CITATIONS
19	Sulfated Hyaluronan Influences the Formation of Artificial Extracellular Matrices and the Adhesion of Osteogenic Cells. Macromolecular Bioscience, 2014, 14, 1783-1794.	2.1	19
20	Sulfation degree not origin of chondroitin sulfate derivatives modulates keratinocyte response. Carbohydrate Polymers, 2018, 191, 53-64.	5.1	19
21	Evaluation of cell-surface interaction using a 3D spheroid cell culture model on artificial extracellular matrices. Materials Science and Engineering C, 2017, 73, 310-318.	3.8	18
22	Covalent linkage of sulfated hyaluronan to the collagen scaffold Mucograft® enhances scaffold stability and reduces proinflammatory macrophage activation in vivo. Bioactive Materials, 2022, 8, 420-434.	8.6	15
23	Quantification of the glycation compound 6-(3-hydroxy-4-oxo-2-methyl-4(1H)-pyridin-1-yl)-l-norleucine (maltosine) in model systems and food samples. European Food Research and Technology, 2016, 242, 547-557.	1.6	14
24	Genome-wide screens uncover KDM2B as a modifier of protein binding to heparan sulfate. Nature Chemical Biology, 2021, 17, 684-692.	3.9	14
25	Hyaluronan/collagen hydrogel matrices containing high-sulfated hyaluronan microgels for regulating transforming growth factor-β1. Journal of Materials Science: Materials in Medicine, 2019, 30, 65.	1.7	13
26	Hyaluronan/Collagen Hydrogels with Sulfated Glycosaminoglycans Maintain VEGF ₁₆₅ Activity and Fine-Tune Endothelial Cell Response. ACS Applied Bio Materials, 2021, 4, 494-506.	2.3	9
27	Artificial Extracellular Matrices Containing Bioactive Glass Nanoparticles Promote Osteogenic Differentiation in Human Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 12819.	1.8	8
28	Sulfated hyaluronan ontaining artificial extracellular matrices promote proliferation of keratinocytes and melanotic phenotype of melanocytes from the outer root sheath of hair follicles. Journal of Biomedical Materials Research - Part A, 2019, 107, 1640-1653.	2.1	7
29	Reciprocal influence of hMSCs/HaCaT cultivated on electrospun scaffolds. Journal of Materials Science: Materials in Medicine, 2017, 28, 128.	1.7	5
30	A Versatile Macromer-Based Glycosaminoglycan (sHA3) Decorated Biomaterial for Pro-Osteogenic Scavenging of Wnt Antagonists. Pharmaceutics, 2020, 12, 1037.	2.0	3
31	Macromol. Biosci. 11/2017. Macromolecular Bioscience, 2017, 17, .	2.1	0