Vaishali Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7482654/publications.pdf

Version: 2024-02-01

840776 888059 19 288 11 17 citations h-index g-index papers 19 19 19 376 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of Processing Methodology on Magnetic Behavior of Multicomponent Ferrite Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 6272-6280.	3.1	54
2	Synthesis of brushite nanoparticles at different temperatures. Chemical Papers, 2010, 64, .	2.2	30
3	Bimodal Co0.5Zn0.5Fe2O4/PANI nanocomposites: Synthesis, formation mechanism and magnetic properties. Composites Science and Technology, 2010, 70, 249-254.	7.8	27
4	Synthesis of 1-dimensional polyaniline nanofibers by reverse microemulsion. Colloid and Polymer Science, 2009, 287, 1107-1110.	2.1	23
5	Mesoporous metal oxide–α-Fe2O3 nanocomposites for sensing formaldehyde and ethanol at room temperature. Journal of Physics and Chemistry of Solids, 2020, 145, 109536.	4.0	21
6	Impedimetric humidity sensing studies of Ag doped MCM-41 mesoporous silica coated on silver sputtered interdigitated electrodes. Journal of Physics and Chemistry of Solids, 2020, 145, 109531.	4.0	17
7	Polyacrylamide and poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-silica composite nanogels through in situ microemulsion polymerisation. Journal of Materials Science, 2010, 45, 1008-1016.	3.7	16
8	Poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic Acid) Nanogels made by Inverse Microemulsion Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1083-1094.	2.2	14
9	Mesoporous silica mediated synthesis of \hat{l} ±-Fe2O3 porous structures and their application as humidity sensors. Journal of Materials Science: Materials in Electronics, 2018, 29, 20506-20516.	2.2	13
10	SYNTHESIS OF POLYANILINE NANOSTRUCTURES VIA REVERSE MICROEMULSION TECHNIQUE. Soft Materials, 2009, 7, 150-163.	1.7	12
11	Enhanced electrical properties of few layers MoS2-PVA nanocomposite film via homogeneous dispersion and annealing effect induced by 80ÂMeV Carbon6+ swift heavy ion irradiation. Materials Science in Semiconductor Processing, 2020, 108, 104877.	4.0	12
12	100â€MeV Silicon9+ swift heavy ion irradiation - Strategic defect annealing approach to enhance the electrical conductivity of few-layered MoS2 sheets - PVA nanocomposite film. Vacuum, 2019, 169, 108939.	3. 5	11
13	Synthesis and characterizations of highly ordered KCl–MCM–41 porous nanocomposites for impedimetric humidity sensing. Journal of Porous Materials, 2019, 26, 389-398.	2.6	7
14	Swift heavy ion beam modified MoS2- PVA nanocomposite free-standing electrodes for polymeric electrolyte based asymmetric supercapacitor. Vacuum, 2021, 184, 109992.	3.5	7
15	Cr doped MCM-41 nanocomposites: an efficient mesoporous catalyst facilitating conversion of toluene to benzaldehyde, an industrial precursor. Journal of Porous Materials, 2019, 26, 239-246.	2.6	6
16	Synthesis of mesoporous α-Fe2O3 nanostructures via nanocasting using MCM-41 and KIT-6 as hard templates for sensing volatile organic compounds (VOCs). Journal of Porous Materials, 2020, 27, 285-294.	2.6	5
17	Physio-chemical influence of high electron-phonon coupling induced by 120ÂMeV Ag9+ SHI irradiation on exfoliated MoS2 - PVA nanocomposite films for achieving remarkable electrical conductivity for potential application in organic electronics. Polymer Testing, 2020, 91, 106776.	4.8	5
18	Wide range humidity sensing of LiCl incorporated in mesoporous silica circular discs. Phase Transitions, 0, , 1-15.	1.3	4

#	Article	IF	CITATIONS
19	Humidity sensing of Mg doped MCM-41 on silver sputtered thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 15646-15653.	2.2	4