Yanmin Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7482642/publications.pdf

Version: 2024-02-01

58	3,667	30	57 g-index
papers	citations	h-index	
61	61	61	5510 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The Efficacy of Using Combination Therapy against Multi-Drug and Extensively Drug-Resistant Pseudomonas aeruginosa in Clinical Settings. Antibiotics, 2022, 11, 323.	1.5	10
2	Mefloquine enhances the activity of colistin against antibiotic-resistant Enterobacterales in vitro and in an in vivo animal study. International Journal of Antimicrobial Agents, 2021, 57, 106309.	1.1	3
3	Zidovudine enhances activity of carbapenems against NDM-1-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2021, 76, 2302-2305.	1.3	5
4	Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Review of Anti-Infective Therapy, 2020, 18, 5-15.	2.0	101
5	A model-based analysis identifies differences in phenotypic resistance between in vitro and in vivo: implications for translational medicine within tuberculosis. Journal of Pharmacokinetics and Pharmacodynamics, 2020, 47, 421-430.	0.8	3
6	Effect of Different Media on the Bactericidal Activity of Colistin and on the Synergistic Combination With Azidothymidine Against mcr-1-Positive Colistin-Resistant Escherichia coli. Frontiers in Microbiology, 2020, 11, 54.	1.5	15
7	Translational Modelâ€Informed Approach for Selection of Tuberculosis Drug Combination Regimens in Early Clinical Development. Clinical Pharmacology and Therapeutics, 2020, 108, 274-286.	2.3	12
8	Urinary bactericidal activity of colistin and azidothymidine combinations against mcr-1-positive colistin-resistant Escherichia coli. International Journal of Antimicrobial Agents, 2019, 54, 55-61.	1.1	10
9	Synergistic activity of colistin with azidothymidine against colistin-resistant Klebsiella pneumoniae clinical isolates collected from inpatients in Greek hospitals. International Journal of Antimicrobial Agents, 2019, 53, 855-858.	1.1	17
10	Bedaquiline kills persistent Mycobacterium tuberculosis with no disease relapse: an in vivo model of a potential cure. Journal of Antimicrobial Chemotherapy, 2019, 74, 1627-1633.	1.3	19
11	Azidothymidine Produces Synergistic Activity in Combination with Colistin against Antibiotic-Resistant <i>Enterobacteriaceae</i> Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	35
12	Moxifloxacin Replacement in Contemporary Tuberculosis Drug Regimens Is Ineffective against Persistent Mycobacterium tuberculosis in the Cornell Mouse Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	4
13	Optimal doses of rifampicin in the standard drug regimen to shorten tuberculosis treatment duration and reduce relapse by eradicating persistent bacteria. Journal of Antimicrobial Chemotherapy, 2018, 73, 724-731.	1.3	17
14	A Method to Evaluate Persistent Mycobacterium tuberculosis In Vitro and in the Cornell Mouse Model of Tuberculosis. Methods in Molecular Biology, 2018, 1736, 157-166.	0.4	4
15	Forecasting Clinical Dose–Response From Preclinical Studies in Tuberculosis Research: Translational Predictions With Rifampicin. Clinical Pharmacology and Therapeutics, 2018, 104, 1208-1218.	2.3	22
16	Serum bactericidal activity of colistin and azidothymidine combinations against mcr-1-positive colistin-resistant Escherichia coli. International Journal of Antimicrobial Agents, 2018, 52, 783-789.	1.1	20
17	A Novel erm (44) Gene Variant from a Human Staphylococcus saprophyticus Isolate Confers Resistance to Macrolides and Lincosamides but Not Streptogramins. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	7
18	Investigation of Elimination Rate, Persistent Subpopulation Removal, and Relapse Rates of Mycobacterium tuberculosis by Using Combinations of First-Line Drugs in a Modified Cornell Mouse Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 4778-4785.	1.4	19

#	Article	IF	Citations
19	Defining dormancy in mycobacterial disease. Tuberculosis, 2016, 99, 131-142.	0.8	66
20	A multistate tuberculosis pharmacometric model: a framework for studying anti-tubercular drug effects <i>in vitro</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 964-974.	1.3	42
21	High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo. Frontiers in Microbiology, 2015, 6, 641.	1.5	95
22	Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo. Frontiers in Microbiology, 2015, 6, 1195.	1.5	17
23	Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces. MBio, 2015, 6, e01693-15.	1.8	333
24	HspX knock-out in Mycobacterium tuberculosis leads to shorter antibiotic treatment and lower relapse rate in a mouse model – A potential novel therapeutic target. Tuberculosis, 2015, 95, 31-36.	0.8	12
25	Antimicrobial Peptide Novicidin Synergizes with Rifampin, Ceftriaxone, and Ceftazidime against Antibiotic-Resistant Enterobacteriaceaeln Vitro. Antimicrobial Agents and Chemotherapy, 2015, 59, 6233-6240.	1.4	47
26	Combinations of \hat{l}^2 -Lactam or Aminoglycoside Antibiotics with Plectasin Are Synergistic against Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0117664.	1.1	40
27	Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin. Frontiers in Microbiology, 2014, 5, 722.	1.5	31
28	Identification of the monocyte activating motif in Mycobacterium tuberculosis chaperonin 60.1. Tuberculosis, 2013, 93, 442-447.	0.8	8
29	Can We Prevent Antimicrobial Resistance by Using Antimicrobials Better?. Pathogens, 2013, 2, 422-435.	1.2	27
30	Tuberculous Endocarditis. International Journal of Cardiology, 2013, 167, 640-645.	0.8	35
31	Enhancement by novel anti-methicillin-resistant Staphylococcus aureus compound HT61 of the activity of neomycin, gentamicin, mupirocin and chlorhexidine: in vitro and in vivo studies. Journal of Antimicrobial Chemotherapy, 2013, 68, 374-384.	1.3	35
32	Contradictory Results with High-Dosage Rifamycin in Mice and Humans. Antimicrobial Agents and Chemotherapy, 2013, 57, 1103-1103.	1.4	10
33	Nonmultiplying Bacteria are Profoundly Tolerant to Antibiotics. Handbook of Experimental Pharmacology, 2012, , 99-119.	0.9	25
34	Sudden cardiac death and tuberculosis – How much do we know?. Tuberculosis, 2012, 92, 307-313.	0.8	37
35	Novel classes of antibiotics or more of the same?. British Journal of Pharmacology, 2011, 163, 184-194.	2.7	452
36	Mycobacterium tuberculosis acg Gene Is Required for Growth and Virulence In Vivo. PLoS ONE, 2011, 6, e20958.	1.1	30

#	Article	IF	CITATIONS
37	3-Ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis of <i>Mycobacterium tuberculosis </i> . Molecular Microbiology, 2010, 75, 107-121.	1.2	113
38	A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections. PLoS ONE, 2010, 5, e11818.	1.1	63
39	Comparison of the Moonlighting Actions of the Two Highly Homologous Chaperonin 60 Proteins of <i>Mycobacterium tuberculosis</i> . Infection and Immunity, 2010, 78, 3196-3206.	1.0	50
40	Acute and Persistent Mycobacterium tuberculosis Infections Depend on the Thiol Peroxidase TPX. PLoS ONE, 2009, 4, e5150.	1.1	62
41	Mycobacterial Heat Shock Protein 60s in the Induction and Regulation of Infectious Disease. Heat Shock Proteins, 2009, , 121-133.	0.2	0
42	A model of catheter-associated urinary tract infection initiated by bacterial contamination of the catheter tip. BJU International, 2008, 102, 67-74.	1.3	37
43	Targeting non-multiplying organisms as a way to develop novel antimicrobials. Trends in Pharmacological Sciences, 2008, 29, 143-150.	4.0	69
44	A Biphasic Response From Bladder Epithelial Cells Induced by Catheter Material and Bacteria: An In Vitro Study of the Pathophysiology of Catheter Related Urinary Tract Infection. Journal of Urology, 2008, 180, 1522-1526.	0.2	11
45	A <i>Mycobacterium tuberculosis</i> Mutant Lacking the <i>groEL</i> Homologue <i>cpn60.1</i> Is Viable but Fails To Induce an Inflammatory Response in Animal Models of Infection. Infection and Immunity, 2008, 76, 1535-1546.	1.0	100
46	Chaperonin 60 and Macrophage Activation. Novartis Foundation Symposium, 2008, 291, 160-172.	1.2	2
47	New Strategies for Antibacterial Drug Design. Drugs in R and D, 2006, 7, 133-151.	1.1	28
48	Deletion of the Mycobacterium tuberculosis α-Crystallin-Like hspX Gene Causes Increased Bacterial Growth In Vivo. Infection and Immunity, 2006, 74, 861-868.	1.0	127
49	Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phaseEscherichia coli. FEMS Microbiology Letters, 2005, 243, 117-124.	0.7	64
50	The Mycobacterium tuberculosis sigl gene controls sensitivity of the bacterium to hydrogen peroxide. FEMS Microbiology Letters, 2004, 237, 415-423.	0.7	45
51	The gene controls sensitivity of the bacterium to hydrogen peroxide. FEMS Microbiology Letters, 2004, 237, 415-423.	0.7	39
52	Sterilizing Activities of Fluoroquinolones against Rifampin-Tolerant Populations of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2003, 47, 653-657.	1.4	196
53	The future challenges facing the development of new antimicrobial drugs. Nature Reviews Drug Discovery, 2002, 1, 895-910.	21.5	525
54	Increased levels ofsigJmRNA in late stationary phase cultures of Mycobacterium tuberculosis detected by DNA array hybridisation. FEMS Microbiology Letters, 2001, 202, 59-65.	0.7	57

#	Article	IF	CITATIONS
55	Detection of mRNA Transcripts and Active Transcription in Persistent Mycobacterium tuberculosisInduced by Exposure to Rifampin or Pyrazinamide. Journal of Bacteriology, 2000, 182, 6358-6365.	1.0	168
56	Regulation of <i>hmp</i> Gene Transcription in <i>Mycobacterium tuberculosis</i> Effects of Oxygen Limitation and Nitrosative and Oxidative Stress. Journal of Bacteriology, 1999, 181, 3486-3493.	1.0	79
57	Transcription of Two Sigma 70 Homologue Genes, <i>sigA</i> and <i>sigB</i> , in Stationary-Phase <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 1999, 181, 469-476.	1.0	104
58	Transcription of the Stationary-Phase-Associated hspX Gene of Mycobacterium tuberculosis Is Inversely Related to Synthesis of the 16-Kilodalton Protein. Journal of Bacteriology, 1999, 181, 1380-1387.	1.0	56