Shao-Cong Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7482036/publications.pdf

Version: 2024-02-01

257450 276875 1,841 65 24 41 h-index citations g-index papers 65 65 65 991 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China). Lithos, 2009, 112, 259-276.	1.4	158
2	Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos, 2013, 182-183, 67-85.	1.4	144
3	Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, Northwestern margin of the South China block: geochemistry, Sr–Nd isotopic, zircon U–Pb dating and Hf isotopic evidences. Contributions To Mineralogy and Petrology, 2010, 159, 389-409.	3.1	135
4	U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong–Baoshan Block, Western Yunnan Province, SW China. Journal of Asian Earth Sciences, 2009, 36, 168-182.	2.3	132
5	Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust. Lithos, 2010, 120, 347-367.	1.4	93
6	Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 2015, 100, 145-163.	2.3	85
7	Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 2012, 47, 216-230.	2.3	84
8	Evolution of the Proto-Tethys in the Baoshan block along the East Gondwana margin: constraints from early Palaeozoic magmatism. International Geology Review, 2017, 59, 1-15.	2.1	77
9	Geochemistry and regional distribution of ophiolites and associated volcanics in Mianli;½ suture, Qinling-Dabie Mountains. Science in China Series D: Earth Sciences, 2004, 47, 289.	0.9	62
10	Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau: Constraints from granitic gneisses and granitoid intrusions. Gondwana Research, 2016, 35, 238-256.	6.0	59
11	Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong–Nujiang Tethys ocean. Lithos, 2017, 286-287, 175-190.	1.4	42
12	Strongly peraluminous fractionated S-type granites in the Baoshan Block, SW China: Implications for two-stage melting of fertile continental materials following the closure of Bangong-Nujiang Tethys. Lithos, 2018, 316-317, 178-198.	1.4	39
13	Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 2019, 183, 103977.	2.3	38
14	Geochemistry and Petrogenesis of Cenozoic Andesite-Dacite Associations from the Hoh Xil Region, Tibetan Plateau. International Geology Review, 2003, 45, 998-1019.	2.1	37
15	Geochemical and geochronological characteristics of Late Cretaceous to Early Paleocene granitoids in the Tengchong Block, Southwestern China: Implications for crustal anatexis and thickness variations along the eastern Neo-Tethys subduction zone. Tectonophysics, 2017, 694, 87-100.	2.2	37
16	Neoproterozoic quartz monzodiorite–granodiorite association from the Luding–Kangding area: Implications for the interpretation of an active continental margin along the Yangtze Block (South) Tj ETQq0 0 0	rg &7 /Ove	erloada 10 Tf 50
17	Geochemistry and zircon U–Pb–Hf isotopes of the 780ÂMa I-type granites in the western Yangtze Block: petrogenesis and crustal evolution. International Geology Review, 2019, 61, 1222-1243.	2.1	31
18	Neoproterozoic peraluminous granites in the western margin of the Yangtze Block, South China: Implications for the reworking of mature continental crust. Precambrian Research, 2019, 333, 105443.	2.7	31

#	Article	IF	Citations
19	Late Early-Cretaceous quartz diorite–granodiorite–monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications. Lithos, 2017, 288-289, 311-325.	1.4	30
20	Partial Melting of Thickened Tibetan Crust: Geochemical Evidence from Cenozoic Adakitic Volcanic Rocks. International Geology Review, 2007, 49, 357-373.	2.1	29
21	Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopic compositions of the Pinghe pluton, Southwest China: implications for the evolution of the early Palaeozoic Proto-Tethys in Southeast Asia. International Geology Review, 2014, 56, 885-904.	2.1	28
22	Geochemistry of the ophiolite and oceanic island basalt in the Kangxian-Pipasi-Nanping tectonic mÃ@lange zone, South Qinling and their tectonic significance. Science in China Series D: Earth Sciences, 2004, 47, 128-137.	0.9	27
23	Neoproterozoic alkaline intrusive complex in the northwestern Yangtze Block, Micang Mountains region, South China: petrogenesis and tectonic significance. International Geology Review, 2017, 59, 311-332.	2.1	27
24	Geochemistry and LA-ICP-MS zircon U-Pb dating of the Dongjiahe ophiolite complex from the western Bikou terrane. Science in China Series D: Earth Sciences, 2007, 50, 305-313.	0.9	24
25	Petrochemistry of granulite xenoliths from the Cenozoic Qiangtang volcanic field, northern Tibetan Plateau: implications for lower crust composition and genesis of the volcanism. International Geology Review, 2011, 53, 926-945.	2.1	24
26	Petrogenesis of Eocene granitoids and microgranular enclaves in the western Tengchong Block: Constraints on eastward subduction of the Neo-Tethys. Lithos, 2016, 264, 96-107.	1.4	24
27	Petrogenesis of high-K calc-alkaline granodiorite and its enclaves from the SE Lhasa block, Tibet (SW) Tj ETQq1 1 2019, 131, 1224-1238.	0.784314 3.3	rgBT /Over
28	Petrogenesis and geochemical diversity of Late Mesoproterozoic S-type granites in the western Yangtze Block, South China: Co-entrainment of peritectic selective phases and accessory minerals. Lithos, 2020, 352-353, 105326.	1.4	20
29	Petrogenesis of late Paleozoic-to-early Mesozoic granitoids and metagabbroic rocks of the Tengchong Block, SW China: implications for the evolution of the eastern Paleo-Tethys. International Journal of Earth Sciences, 2018, 107, 431-457.	1.8	19
30	Neoproterozoic metasomatized mantle beneath the western Yangtze Block, South China: Evidence from whole-rock geochemistry and zircon U-Pb-Hf isotopes of mafic rocks. Journal of Asian Earth Sciences, 2021, 206, 104616.	2.3	19
31	The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: Implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau. Gondwana Research, 2014, 25, 1501-1516.	6.0	18
32	Compositional variations of granitic rocks in continental margin arc: Constraints from the petrogenesis of Eocene granitic rocks in the Tengchong Block, SW China. Lithos, 2019, 326-327, 125-143.	1.4	18
33	Genesis of ca. 850–835ÂMa high-Mg# diorites in the western Yangtze Block, South China: Implications for mantle metasomatism under the subduction process. Precambrian Research, 2020, 343, 105738.	2.7	18
34	Early Jurassic monzogranite-tonalite association from the southern Zhangguangcai Range: Implications for paleo–Pacific plate subduction along northeastern China. Lithosphere, 2016, 8, 396-411.	1.4	17
35	Earlyâ€Cretaceous Syenites and Granites in the Northeastern Tengchong Block, SW China: Petrogenesis and Tectonic Implications. Acta Geologica Sinica, 2018, 92, 1349-1365.	1.4	10
36	Petrogenesis and its significance to continental dynamics of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang, Tibetan Plateau. Science in China Series D: Earth Sciences, 2001, 44, 45-55.	0.9	9

#	Article	IF	CITATIONS
37	Geochemical characteristics of Bikou volcanic group and Sr-Nd-Pb isotopic composition: Evidence for breakup event in the north margin of Yangtze plate, Jining era. Science in China Series D: Earth Sciences, 2007, 50, 339-350.	0.9	9
38	Petrogenesis of the Zheduoshan Cenozoic granites in the eastern margin of Tibet: Constraints on the initial activity of the Xianshuihe Fault. Journal of Geodynamics, 2018, 117, 49-59.	1.6	9
39	Magma mixing for the genesis of Neoproterozoic Mopanshan granitoids in the western Yangtze Block, South China. Journal of Asian Earth Sciences, 2022, 231, 105227.	2.3	9
40	Neoproterozoic gabbro–granite association from the Micangshan area, northern Yangtze Block: Implication for crustal growth in an active continental margin. Geological Journal, 2018, 53, 2471-2486.	1.3	8
41	Genesis of high-potassium calc-alkaline peraluminous I-type granite: New insights from the Gaoligong belt granites in southeastern Tibet Plateau. Lithos, 2020, 354-355, 105343.	1.4	8
42	Granitic Magmatism in Eastern Tethys Domain (Western China) and their Geodynamic Implications. Acta Geologica Sinica, 2022, 96, 401-415.	1.4	8
43	Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt. Journal of Earth Science (Wuhan,) Tj ETQq1 1 0.78	3 4 814 rgB	T†Overlock
44	Early Palaeozoic alkaline trachytes in the North Daba Mountains, South Qinling Belt: petrogenesis and geological implications. International Geology Review, 2021, 63, 2037-2056.	2.1	7
45	Neo-Tethyan evolution in southeastern extension of Tibet: Constraints from Early Paleocene to Early Eocene granitic rocks with associated enclaves in Tengchong Block. Lithos, 2020, 364-365, 105551.	1.4	7
46	Middle Permian high Sr/Y monzogranites in central Inner Mongolia: reworking of the juvenile lower crust of Bainaimiao arc belt during slab break-off of the Palaeo-Asian oceanic lithosphere. International Geology Review, 2019, 61, 2083-2099.	2.1	6
47	Nickel isotopic composition of the upper continental crust. Geochimica Et Cosmochimica Acta, 2022, 332, 263-284.	3.9	6
48	Geochemistry and Sr-Nd-Pb isotopic characteristics of the Mugouriwang Cenozoic volcanic rocks from Tibetan Plateau: Constraints on mantle source of the underplated basic magma. Science in China Series D: Earth Sciences, 2007, 50, 984-994.	0.9	5
49	Petrogenesis of Early Cretaceous high-Mg# granodiorites in the northeastern Lhasa terrane, SE Tibet: Evidence for mantle-deep crustal interaction. Journal of Asian Earth Sciences, 2019, 177, 17-37.	2.3	5
50	Late Triassic highâ€Mg diorites and associated mafic dikes from the southern Zhangguangcai Range (NE) Tj ETQq 627-649.	0 0 0 rgBT 1.3	/Overlock 1 5
51	Peritectic assemblage entrainment (PAE) model for the petrogenesis of Neoproterozoic high-maficity I-type granitoids in the western Yangtze Block, South China. Lithos, 2021, 402-403, 106247.	1.4	5
52	High-K calc-alkaline to shoshonitic intrusions in SE Tibet: implications for metasomatized lithospheric mantle beneath an active continental margin. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	5
53	Petrogenesis of the Cenozoic volcanic rocks from the northern part of Qinhai-Xizang (Tibet) plateau. Diqiu Huaxue, 1999, 18, 361-371.	0.5	4
54	Cenozoic volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, China: Petrochemical evidence for partial melting of the mantle-crust transition zone. Diqiu Huaxue, 2007, 26, 305-311.	0.5	4

#	Article	IF	CITATIONS
55	Further Study on Geochemical Characteristics and Genesis of the Boninitic Rocks from Bikou Group, Northern Yangtze Plate. Journal of China University of Geosciences, 2006, 17, 126-131.	0.5	3
56	Post-collisional adakitic biotite plagiogranites from Guangtoushan pluton (Mianxian, central China): Petrogenesis and tectonic implication. Frontiers of Earth Science, 2007, 1, 299-303.	0.5	3
57	Post-collisional plutonism with adakitic signatures: The Triassic Yangba granodiorite (Bikou terrane,) Tj ETQq1 1	0.784314 0.5	rgBT /Overlo
58	Late Triassic Biotite Monzogranite from the Western Litang Area, Yidun Terrane, SW China: Petrogenesis and Tectonic Implications. Acta Geologica Sinica, 2019, 93, 307-321.	1.4	3
59	Three stages of early Paleozoic magmatism in the Tibetan-Himalayan orogen: New insights into the final Gondwana assembly. Journal of Asian Earth Sciences, 2021, 221, 104949.	2.3	3
60	Westward migration of high-magma addition rate events in SE Tibet. Tectonophysics, 2022, 830, 229308.	2.2	3
61	Three-phase uplift of the Qinghai-Tibet plateau during the Cenozoic period: Igneous petrology constraints. Diqiu Huaxue, 2000, 19, 152-160.	0.5	2
62	Discovery of the granulite xenoliths in Cenozoic volcanic rocks from Hoh Xil, Tibetan plateau *. Progress in Natural Science: Materials International, 2003, 13, 712-716.	4.4	2
63	Genesis of the Madang Cenozoic sodic alkaline basalt in the eastern margin of the Tibetan Plateau and its continental dynamic implications. Science in China Series D: Earth Sciences, 2007, 50, 314-321.	0.9	2
64	High-temperature melting of different crustal levels in the inner zone of the Emeishan large igneous province: Constraints from the Permian ferrosyenite and granite from the Panxi region. Lithos, 2021, 402-403, 105979.	1.4	2
65	U-Pb zircon geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopic composition of the Late Cretaceous monzogranite from the north of the Yidun Arc, Tibetan Plateau Eastern, SW China: petrogenesis and tectonic implication. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	0