Umberto Castiello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481973/publications.pdf Version: 2024-02-01

		34493	48101
227	10,336	54	92
papers	citations	h-index	g-index
231	231	231	7153
all docs	does citations	times ranked	citing authors
		times functu	citing autions

#	Article	IF	CITATIONS
1	The Effect of Odour Valence and Odour Detection Threshold on the Withholding and Cancellation of Reach-to-Press Responses. Chemosensory Perception, 2022, 15, 35-48.	0.7	3
2	Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants. Biology, 2022, 11, 405.	1.3	7
3	Dopamine Modulation of Drosophila Ellipsoid Body Neurons, a Nod to the Mammalian Basal Ganglia. Frontiers in Physiology, 2022, 13, 849142.	1.3	4
4	Do plants pay attention? A possible phenomenological-empirical approach. Progress in Biophysics and Molecular Biology, 2022, 173, 11-23.	1.4	10
5	On-line control of movement in plants. Biochemical and Biophysical Research Communications, 2021, 564, 86-91.	1.0	12
6	Handedness and White Matter Networks. Neuroscientist, 2021, 27, 88-103.	2.6	24
7	(Re)claiming plants in comparative psychology Journal of Comparative Psychology (Washington, D C:) Tj ETQq1	1 0.78431 0.3	.4.rgBT /Ove
8	Reach-to-Grasp: A Multisensory Experience. Frontiers in Psychology, 2021, 12, 614471.	1.1	9
9	Olfactory influences on reach-to-press movements in a stop-signal task. Cognition and Emotion, 2021, 35, 1214-1221.	1.2	5
10	Can Plants Move Like Animals? A Three-Dimensional Stereovision Analysis of Movement in Plants. Animals, 2021, 11, 1854.	1.0	9
11	Neuroanatomical Correlates of Binge-Eating Behavior: At the Roots of Unstoppable Eating. Brain Sciences, 2021, 11, 1162.	1.1	3
12	Sowing the seeds of intentionality: Motor intentions in plants. Plant Signaling and Behavior, 2021, 16, 1949818.	1.2	3
13	The coding of object thickness in plants: When roots matter Journal of Comparative Psychology (Washington, D C: 1983), 2021, 135, 495-504.	0.3	6
14	Cracking the code: a comparative approach to plant communication. Communicative and Integrative Biology, 2021, 14, 176-185.	0.6	1
15	Corticospinal excitability and conductivity are related to the anatomy of the corticospinal tract. Brain Structure and Function, 2021, , 1.	1.2	1
16	Characterizing impulsivity and restingâ€state functional connectivity in normalâ€weight binge eaters. International Journal of Eating Disorders, 2020, 53, 478-488.	2.1	16
17	Metacognition in individuals recovered from anorexia nervosa: a voxel-based morphometry study Psychiatry Research - Neuroimaging, 2020, 304, 111138.	0.9	2
18	Speed–accuracy trade-off in plants. Psychonomic Bulletin and Review, 2020, 27, 966-973.	1.4	18

#	Article	IF	CITATIONS
19	Your error in my hand: An investigation of observational posterror slowing. Psychonomic Bulletin and Review, 2019, 26, 298-304.	1.4	4
20	Gaze and body cues interplay during interactive requests. PLoS ONE, 2019, 14, e0223591.	1.1	5
21	Flexible control of movement in plants. Scientific Reports, 2019, 9, 16570.	1.6	38
22	Sex Differences in Body Ownership in Adults With Autism Spectrum Disorder. Frontiers in Psychology, 2019, 10, 168.	1.1	3
23	Changes in corticospinal excitability associated with post-error slowing. Cortex, 2019, 120, 92-100.	1.1	3
24	Action-based attention in Drosophila melanogaster. Journal of Neurophysiology, 2019, 121, 2428-2432.	0.9	5
25	Task-irrelevant odours affect both response inhibition and response readiness in fast-paced Go/No-Go task: the case of valence. Scientific Reports, 2019, 9, 19329.	1.6	9
26	Action Observation and Effector Independency. Frontiers in Human Neuroscience, 2019, 13, 416.	1.0	4
27	A review and consideration on the kinematics of reach-to-grasp movements in macaque monkeys. Journal of Neurophysiology, 2019, 121, 188-204.	0.9	15
28	The impulsive brain: Neural underpinnings of binge eating behavior in normal-weight adults. Appetite, 2019, 136, 33-49.	1.8	38
29	Social Motor Priming: when offline interference facilitates motor execution. PeerJ, 2019, 7, e7796.	0.9	2
30	Cross-talk connections underlying dorsal and ventral stream integration during hand actions. Cortex, 2018, 103, 224-239.	1.1	44
31	Fetal Kinematics: Basic Outcomes and Translational Outlook. ACS Chemical Neuroscience, 2018, 9, 165-166.	1.7	2
32	Exercise-induced arousal affects free-choices to inhibit. Psychology of Sport and Exercise, 2018, 35, 89-97.	1.1	2
33	Effects of intentionality and subliminal information in free-choices to inhibit. Neuropsychologia, 2018, 109, 28-38.	0.7	7
34	Measuring how typical and atypical minds read other's intentions. Physics of Life Reviews, 2018, 24, 111-113.	1.5	1
35	Look at Me: Early Gaze Engagement Enhances Corticospinal Excitability During Action Observation. Frontiers in Psychology, 2018, 9, 1408.	1.1	7
36	Reach-To-Grasp Movements: A Multimodal Techniques Study. Frontiers in Psychology, 2018, 9, 990.	1.1	19

#	Article	IF	CITATIONS
37	The Neural Correlates of Grasping in Left-Handers: When Handedness Does Not Matter. Frontiers in Neuroscience, 2018, 12, 192.	1.4	8
38	The grasping side of post-error slowing. Cognition, 2018, 179, 1-13.	1.1	20
39	Asymmetry and Structure of the Fronto-Parietal Networks Underlie Visuomotor Processing in Humans. Cerebral Cortex, 2017, 27, bhv348.	1.6	51
40	Selective reaching in macaques: evidence for action-centred attention. Animal Cognition, 2017, 20, 359-366.	0.9	3
41	In sync or not in sync? Illusory body ownership in autism spectrum disorder. Research in Autism Spectrum Disorders, 2017, 41-42, 1-7.	0.8	6
42	What is a number? The interplay between number and continuous magnitudes. Behavioral and Brain Sciences, 2017, 40, e187.	0.4	8
43	The origin of human handedness and its role in pre-birth motor control. Scientific Reports, 2017, 7, 16804.	1.6	36
44	Potential for social involvement modulates activity within the mirror and the mentalizing systems. Scientific Reports, 2017, 7, 14967.	1.6	9
45	The role of the frontal aslant tract and premotor connections in visually guided hand movements. NeuroImage, 2017, 146, 419-428.	2.1	50
46	Reaching and Graspingâ [~] †. , 2017, , .		0
47	Overt orienting of spatial attention and corticospinal excitability during action observation are unrelated. PLoS ONE, 2017, 12, e0173114.	1.1	15
48	Decoding social intentions in human prehensile actions: Insights from a combined kinematics-fMRI study. PLoS ONE, 2017, 12, e0184008.	1.1	6
49	It's all in the type of the task: Dopamine modulates kinematic patterns during competitive vs. cooperative interaction in Parkinson's disease. Neuropsychologia, 2016, 93, 106-115.	0.7	8
50	Dopamine depletion affects communicative intentionality in Parkinson's disease patients: Evidence from action kinematics. Cortex, 2016, 77, 84-94.	1.1	8
51	Probing the reaching–grasping network in humans through multivoxel pattern decoding. Brain and Behavior, 2015, 5, e00412.	1.0	26
52	The Simon Effect in Action: Planning and/or On‣ine Control Effects?. Cognitive Science, 2015, 39, 972-991.	0.8	15
53	Kick with the finger: symbolic actions shape motor cortex excitability. European Journal of Neuroscience, 2015, 42, 2860-2866.	1.2	11
54	A kinematic study on (un)intentional imitation in bottlenose dolphins. Frontiers in Human Neuroscience, 2015, 9, 446.	1.0	2

#	Article	IF	CITATIONS
55	Intersegmental Coordination in the Kinematics of Prehension Movements of Macaques. PLoS ONE, 2015, 10, e0132937.	1.1	7
56	Exploring manual asymmetries during grasping: a dynamic causal modeling approach. Frontiers in Psychology, 2015, 6, 167.	1.1	18
57	Motor interference in interactive contexts. Frontiers in Psychology, 2015, 6, 791.	1.1	11
58	The multiform motor cortical output: Kinematic, predictive and response coding. Cortex, 2015, 70, 169-178.	1.1	21
59	Congruent and Incongruent Corticospinal Activations at the Level of Multiple Effectors. Journal of Cognitive Neuroscience, 2015, 27, 2063-2070.	1.1	1
60	Social intentions in Parkinson's disease patients: A kinematic study. Cortex, 2015, 70, 179-188.	1.1	17
61	An investigation of the neural circuits underlying reaching and reach-to-grasp movements: from planning to execution. Frontiers in Human Neuroscience, 2014, 8, 676.	1.0	35
62	The left side of motor resonance. Frontiers in Human Neuroscience, 2014, 8, 702.	1.0	7
63	Kinematics of the Reach-to-Grasp Movement in Vascular Parkinsonism: A Comparison with Idiopathic ParkinsonĂ¢â,¬â,,¢s Disease Patients. Frontiers in Neurology, 2014, 5, 75.	1.1	6
64	Object size modulates frontoâ€parietal activity during reaching movements. European Journal of Neuroscience, 2014, 39, 1528-1537.	1.2	14
65	Selecting food. The contribution of memory, liking, and action. Appetite, 2014, 76, 186-196.	1.8	5
66	How posture affects macaques' reach-to-grasp movements. Experimental Brain Research, 2014, 232, 919-925.	0.7	4
67	The kinematic signature of voluntary actions. Neuropsychologia, 2014, 64, 169-175.	0.7	17
68	Facilitation of action planning in children with autism: The contribution of the maternal body odor. Brain and Cognition, 2014, 88, 73-82.	0.8	22
69	Monkey see, Monkey reach: Action selection of reaching movements in the macaque monkey. Scientific Reports, 2014, 4, 4019.	1.6	6
70	Reaching and grasping behavior in Macaca fascicularis: a kinematic study. Experimental Brain Research, 2013, 224, 119-124.	0.7	18
71	Anticipating the course of an action: evidence from corticospinal excitability. BMC Neuroscience, 2013, 14, 91.	0.8	1
72	Corticospinal excitability during the observation of social behavior. Brain and Cognition, 2013, 81, 176-182.	0.8	20

#	Article	IF	CITATIONS
73	Body Odors Promote Automatic Imitation in Autism. Biological Psychiatry, 2013, 74, 220-226.	0.7	69
74	Implicit olfactory processing attenuates motor disturbances in idiopathic Parkinson's disease. Cortex, 2013, 49, 1241-1251.	1.1	7
75	When emulation becomes reciprocity. Social Cognitive and Affective Neuroscience, 2013, 8, 662-669.	1.5	66
76	When mirroring is not enough. NeuroReport, 2013, 24, 601-604.	0.6	19
77	Goal or movement? Action representation within the primary motor cortex. European Journal of Neuroscience, 2013, 38, 3507-3512.	1.2	37
78	Shadows in the mirror. NeuroReport, 2013, 24, 63-67.	0.6	11
79	Visuo-olfactory integration during action observation and execution of reach-to-grasp movements. NeuroReport, 2013, 24, 768-772.	0.6	1
80	Corticospinal Excitability Modulation During Action Observation. Journal of Visualized Experiments, 2013, , 51001.	0.2	16
81	The Development of Upper Limb Movements: From Fetal to Post-Natal Life. PLoS ONE, 2013, 8, e80876.	1.1	33
82	Reach-to-grasp movements in Macaca fascicularis monkeys: the Isochrony Principle at work. Frontiers in Psychology, 2013, 4, 114.	1.1	19
83	Motor resonance in left- and right-handers: evidence for effector-independent motor representations. Frontiers in Human Neuroscience, 2013, 7, 33.	1.0	24
84	Co-Registering Kinematics and Evoked Related Potentials during Visually Guided Reach-to-Grasp Movements. PLoS ONE, 2013, 8, e65508.	1.1	13
85	The transfer of motor functional strategies via action observation. Biology Letters, 2012, 8, 193-196.	1.0	15
86	From simulation to reciprocity: The case of complementary actions. Social Neuroscience, 2012, 7, 146-158.	0.7	62
87	Implicit olfactory abilities in traumatic brain injured patients. Journal of Clinical and Experimental Neuropsychology, 2012, 34, 977-988.	0.8	4
88	Object Presence Modulates Activity within the Somatosensory Component of the Action Observation Network. Cerebral Cortex, 2012, 22, 668-679.	1.6	20
89	Grasping with Tools: Corticospinal Excitability Reflects Observed Hand Movements. Cerebral Cortex, 2012, 22, 710-716.	1.6	46
90	Motor cortex excitability is tightly coupled to observed movements. Neuropsychologia, 2012, 50, 2341-2347.	0.7	39

#	Article	IF	CITATIONS
91	Social grasping: From mirroring to mentalizing. NeuroImage, 2012, 61, 240-248.	2.1	128
92	Subliminally Perceived Odours Modulate Female Intrasexual Competition: An Eye Movement Study. PLoS ONE, 2012, 7, e30645.	1.1	48
93	Grasping intentions: from thought experiments to empirical evidence. Frontiers in Human Neuroscience, 2012, 6, 117.	1.0	126
94	Visuomotor resonance in autism spectrum disorders. Frontiers in Integrative Neuroscience, 2012, 6, 110.	1.0	12
95	Développement de l'action planifiée chez le fœtus humain. Enfance, 2012, 2012, 9-23.	0.1	4
96	Développement de l'action planifiée chez le fœtus humain. Enfance, 2012, Nº 1, 9-23.	0.1	7
97	Smelling odors, understanding actions. Social Neuroscience, 2011, 6, 31-47.	0.7	19
98	Corticospinal excitability modulation to hand muscles during the observation of appropriate versus inappropriate actions. Cognitive Neuroscience, 2011, 2, 83-90.	0.6	18
99	The Detection and the Neural Correlates of Behavioral (Prior) Intentions. Journal of Cognitive Neuroscience, 2011, 23, 3888-3902.	1.1	21
100	Grasping a fruit. Hands do what flavour says. Appetite, 2011, 56, 249-254.	1.8	10
101	Cues to intention: The role of movement information. Cognition, 2011, 119, 242-252.	1.1	149
102	Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Experimental Brain Research, 2011, 211, 547-556.	0.7	99
103	Corticospinal excitability is specifically modulated by the social dimension of observed actions. Experimental Brain Research, 2011, 211, 557-568.	0.7	56
104	When flavor guides motor control: an effector independence study. Experimental Brain Research, 2011, 212, 339-346.	0.7	9
105	Detecting fakers of the autobiographical IAT. Applied Cognitive Psychology, 2011, 25, 299-306.	0.9	48
106	How Objects Are Grasped: The Interplay between Affordances and End-Goals. PLoS ONE, 2011, 6, e25203.	1.1	89
107	Perception of Shadows in Children with Autism Spectrum Disorders. PLoS ONE, 2010, 5, e10582.	1.1	15
108	Toward You. Current Directions in Psychological Science, 2010, 19, 183-188.	2.8	182

#	Article	IF	CITATIONS
109	Testing the effects of end-goal during reach-to-grasp movements in Parkinson's disease. Brain and Cognition, 2010, 74, 169-177.	0.8	14
110	When Ears Drive Hands: The Influence of Contact Sound on Reaching to Grasp. PLoS ONE, 2010, 5, e12240.	1.1	39
111	Wired to Be Social: The Ontogeny of Human Interaction. PLoS ONE, 2010, 5, e13199.	1.1	185
112	Neurofunctional Modulation of Brain Regions by the Observation of Pointing and Grasping Actions. Cerebral Cortex, 2009, 19, 367-374.	1.6	51
113	Visuomotor priming effects in Parkinson's disease patients depend on the match between the observed and the executed action. Neuropsychologia, 2009, 47, 835-842.	0.7	37
114	Mirror neurons in humans: Consisting or confounding evidence?. Brain and Language, 2009, 108, 10-21.	0.8	142
115	The Effects of Task-Irrelevant Olfactory Information on the Planning and the Execution of Reach-to-Grasp Movements. Chemosensory Perception, 2009, 2, 25-31.	0.7	5
116	Breaking the flow of an action. Experimental Brain Research, 2009, 192, 287-292.	0.7	7
117	Does the intention to communicate affect action kinematics?. Consciousness and Cognition, 2009, 18, 766-772.	0.8	103
118	Reaching and Grasping. , 2009, , 23-28.		1
119	Investigation of the neural correlates underlying action observation in multiple sclerosis patients. Experimental Neurology, 2009, 217, 252-257.	2.0	8
120	Visual features of an observed agent do not modulate human brain activity during action observation. NeuroImage, 2009, 46, 844-853.	2.1	42
121	Modulation of the action control system by social intention: Unexpected social requests override preplanned action Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1490-1500.	0.7	91
122	The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 2008, 17, 557-564.	0.8	126
123	An object for an action, the same object for other actions: effects on hand shaping. Experimental Brain Research, 2008, 185, 111-119.	0.7	162
124	Both your intention and mine are reflected in the kinematics of my reach-to-grasp movement. Cognition, 2008, 106, 894-912.	1.1	138
125	Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia, 2008, 46, 448-454.	0.7	136
126	Motor ontology in representing gaze–object relations. Neuroscience Letters, 2008, 430, 246-251.	1.0	11

#	Article	IF	CITATIONS
127	How the gaze of others influences object processing. Trends in Cognitive Sciences, 2008, 12, 254-258.	4.0	109
128	Observing social interactions: The effect of gaze. Social Neuroscience, 2008, 3, 51-59.	0.7	31
129	The Cortical Control of Visually Guided Grasping. Neuroscientist, 2008, 14, 157-170.	2.6	96
130	How to Accurately Detect Autobiographical Events. Psychological Science, 2008, 19, 772-780.	1.8	124
131	Effects of Olfactory Stimuli on Arm-Reaching Duration. Chemical Senses, 2008, 33, 433-440.	1.1	15
132	Odours Grab His Hand but Not Hers. Perception, 2008, 37, 1886-1889.	0.5	5
133	The Grasping Side of Odours. PLoS ONE, 2008, 3, e1795.	1.1	27
134	Cortical Activations in Humans Grasp-Related Areas Depend on Hand Used and Handedness. PLoS ONE, 2008, 3, e3388.	1.1	62
135	Motor contagion from gaze: the case of autism. Brain, 2007, 130, 2401-2411.	3.7	70
136	The neural basis of selection-for-action. Neuroscience Letters, 2007, 417, 171-175.	1.0	17
137	Differential cortical activity for precision and whole-hand visually guided grasping in humans. European Journal of Neuroscience, 2007, 25, 1245-1252.	1.2	104
138	Different action patterns for cooperative and competitive behaviour. Cognition, 2007, 102, 415-433.	1.1	170
139	Evidence of early development of action planning in the human foetus: a kinematic study. Experimental Brain Research, 2007, 176, 217-226.	0.7	204
140	Distractor objects affect fingers' angular distances but not fingers' shaping during grasping. Experimental Brain Research, 2007, 178, 194-205.	0.7	11
141	Control of hand shaping in response to object shape perturbation. Experimental Brain Research, 2007, 180, 85-96.	0.7	20
142	Comparing Natural and Constrained Movements: New Insights into the Visuomotor Control of Grasping. PLoS ONE, 2007, 2, e1108.	1.1	52
143	When Gaze Turns into Grasp. Journal of Cognitive Neuroscience, 2006, 18, 2130-2137.	1.1	69
144	Attention-Deficit/Hyperactivity Disorder and Working Memory: A Task Switching Paradigm. Journal of Clinical and Experimental Neuropsychology, 2006, 28, 1288-1306.	0.8	15

#	Article	IF	CITATIONS
145	Effects of End-Goal on Hand Shaping. Journal of Neurophysiology, 2006, 95, 2456-2465.	0.9	154
146	Transfer of interfered motor patterns to self from others. European Journal of Neuroscience, 2006, 23, 1949-1955.	1.2	13
147	An object-centred reference frame for control of grasping: effects of grasping a distractor object on visuomotor control. Experimental Brain Research, 2006, 170, 532-542.	0.7	14
148	Adjusting reach to lift movements to sudden visible changes in target's weight. Experimental Brain Research, 2006, 173, 629-636.	0.7	27
149	Failure to read motor intentions from gaze in children with autism. Neuropsychologia, 2006, 44, 1483-1488.	0.7	31
150	Recovering Space in Unilateral Neglect: A Neurological Dissociation Revealed by Virtual Reality. Journal of Cognitive Neuroscience, 2006, 18, 833-843.	1.1	18
151	Crossmodal binding in localizing objects outside the field of view. Visual Cognition, 2006, 13, 223-246.	0.9	Ο
152	A Comparison of the Reach-To-Grasp Movement Between Children and Adults: A Kinematic Study. Developmental Neuropsychology, 2006, 30, 719-738.	1.0	28
153	Cross-Modal Interactions between Olfaction and Vision When Grasping. Chemical Senses, 2006, 31, 665-671.	1.1	67
154	Effects of increasing visual load on aurally and visually guided target acquisition in a virtual environment. Applied Ergonomics, 2005, 36, 335-343.	1.7	18
155	The neuroscience of grasping. Nature Reviews Neuroscience, 2005, 6, 726-736.	4.9	511
156	Effects of an orientation illusion on motor performance and motor imagery. Experimental Brain Research, 2005, 166, 17-22.	0.7	20
157	Reaching in Children With and Without Developmental Coordination Disorder Under Normal and Perturbed Vision. Developmental Neuropsychology, 2005, 27, 257-273.	1.0	31
158	Improving left hemispatial neglect using virtual reality. Neurology, 2004, 62, 1958-1962.	1.5	48
159	Binding personal and extrapersonal space through body shadows. Nature Neuroscience, 2004, 7, 14-16.	7.1	79
160	The Human Premotor Cortex Is 'Mirror' Only for Biological Actions. Current Biology, 2004, 14, 117-120.	1.8	285
161	Comparing Effects of 2-D and 3-D Visual Cues During Aurally Aided Target Acquisition. Human Factors, 2004, 46, 728-737.	2.1	10
162	Differential Effects of Cast Shadows on Perception and Action. Perception, 2004, 33, 1291-1304.	0.5	15

#	Article	IF	CITATIONS
163	A cross-modal interference effect in grasping objects. Psychonomic Bulletin and Review, 2003, 10, 924-931.	1.4	20
164	The human temporal lobe integrates facial form and motion: evidence from fMRI and ERP studies. NeuroImage, 2003, 19, 861-869.	2.1	99
165	Motor facilitation following action observation: A behavioural study in prehensile action. Brain and Cognition, 2003, 53, 495-502.	0.8	133
166	Shadows in the Brain. Journal of Cognitive Neuroscience, 2003, 15, 862-872.	1.1	14
167	The reach–to–grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 393-403.	1.8	239
168	Understanding other people's actions: Intention and attention Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 416-430.	0.7	114
169	Effects of left parietal injury on covert orienting of attention. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 73-76.	0.9	16
170	Neuropsychological Evaluation of Deficits in Executive Functioning for ADHD Children With or Without Learning Disabilities. Developmental Neuropsychology, 2002, 22, 501-531.	1.0	62
171	Perceiving an entire object and grasping only half of it. Neuropsychologia, 2002, 40, 145-151.	0.7	25
172	Tactile interference in visually guided reach-to-grasp movements. Experimental Brain Research, 2002, 144, 1-7.	0.7	12
173	Posterior parietal cortex control of reach-to-grasp movements in humans. European Journal of Neuroscience, 2002, 15, 2037-2042.	1.2	45
174	Implicit processing of shadows. Vision Research, 2001, 41, 2305-2309.	0.7	34
175	Thumb invariance during prehension movement: effects of object orientation. NeuroReport, 2001, 12, 2185-2187.	0.6	22
176	Modulation of reach-to-grasp parameters: semantic category, volumetric properties and distractor interference?. Experimental Brain Research, 2001, 138, 54-61.	0.7	10
177	Attentional processing of colour and location cues. Experimental Brain Research, 2001, 138, 520-526.	0.7	2
178	The effects of abrupt onset of 2-D and 3-D distractors on prehension movements. Perception & Psychophysics, 2001, 63, 1014-1025.	2.3	17
179	Human inferior parietal cortex â€~programs' the action class of grasping. Cognitive Systems Research, 2000, 1, 89-97.	1.9	18
180	The reach-to-grasp movement in Parkinson's disease before and after dopaminergic medication. Neuropsychologia, 2000, 38, 46-59.	0.7	74

#	Article	IF	CITATIONS
181	Dopaminergic effects on the implicit processing of distractor objects in Parkinson's disease. Experimental Brain Research, 2000, 135, 251-258.	0.7	12
182	Interference from Distractors in Reach-to-grasp Movements. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2000, 53, 131-151.	2.3	27
183	The reach-to-grasp movement in Parkinson's disease: response to a simultaneous perturbation of object position and object size. Experimental Brain Research, 1999, 125, 453-462.	0.7	39
184	Sudden and gradual presentation of distractor objects: differential interference effects. Experimental Brain Research, 1999, 128, 550-556.	0.7	5
185	Covert orienting and focusing of attention in children with attention deficit hyperactivity disorder. Neuropsychologia, 1999, 37, 345-356.	0.7	76
186	Semantic category interference effects upon thereach-to-grasp movement. Neuropsychologia, 1999, 37, 857-868.	0.7	10
187	Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 1999, 3, 264-271.	4.0	102
188	Reply to Tresilian. Trends in Cognitive Sciences, 1999, 3, 408.	4.0	2
189	Prehension movements and perceived object depth structure. Perception & Psychophysics, 1998, 60, 662-672.	2.3	8
190	Dissociation of covert and overt spatial attention during prehension movements: Selective interference effects. Perception & Psychophysics, 1998, 60, 1426-1440.	2.3	26
191	Kinematic analysis of the reach to grasp movement in Parkinsons and Huntingtons disease subjects. Neuropsychologia, 1998, 36, 1203-1208.	0.7	38
192	Reach to grasp: the response to a simultaneous perturbation of object position and size. Experimental Brain Research, 1998, 120, 31-40.	0.7	85
193	Attentional coding for three-dimensional objects and two-dimensional shapes. Experimental Brain Research, 1998, 123, 289-297.	0.7	17
194	The effect of unilateral posteroventral pallidotomy on the kinematics of the reach to grasp movement. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 65, 479-487.	0.9	16
195	The bilateral reach-to-grasp movement of Parkinson's disease subjects. Brain, 1997, 120, 593-604.	3.7	49
196	Processing efficiency of the orienting and the focusing of covert attention in relation to the level of disability in Parkinson's disease. Parkinsonism and Related Disorders, 1997, 3, 27-36.	1.1	4
197	Arm and mouth coordination during the eating action in humans: a kinematic analysis. Experimental Brain Research, 1997, 115, 552-556.	0.7	26
198	How perceived object dimension influences prehension. NeuroReport, 1996, 7, 825-829.	0.6	15

#	Article	IF	CITATIONS
199	Grasping a fruit: Selection for action Journal of Experimental Psychology: Human Perception and Performance, 1996, 22, 582-603.	0.7	153
200	Grasping a fruit: selection for action. Journal of Experimental Psychology: Human Perception and Performance, 1996, 22, 582-603.	0.7	118
201	The drinking action of Parkinson's disease subjects. Brain, 1995, 118, 959-970.	3.7	51
202	Reorganization of prehension components following perturbation of object size Psychology and Aging, 1995, 10, 204-214.	1.4	38
203	A brain-damaged patient with an unusual perceptuomotor deficit. Nature, 1995, 374, 805-808.	13.7	14
204	Object-centred orienting of attention. Visual Cognition, 1995, 2, 165-181.	0.9	49
205	Covert visuospatial attentional mechanisms in Parkinson's disease. Brain, 1995, 118, 153-166.	3.7	40
206	Orienting the Finger Opposition Space during Prehension Movements. Journal of Motor Behavior, 1994, 26, 178-186.	0.5	167
207	Perturbation of a prehension movement in Parkinson's disease. Movement Disorders, 1994, 9, 415-425.	2.2	21
208	Parkinson's disease: reorganization of the reach to grasp movement in response to perturbation of the distal motor patterning. Neuropsychologia, 1994, 32, 1367-1382.	0.7	19
209	Reach to Grasp: Changes With Age. Journal of Gerontology, 1994, 49, P1-P7.	2.0	67
210	Chapter 9 Vision and The Reach to Grasp Movement. Advances in Psychology, 1994, 105, 171-195.	0.1	2
211	Chapter 11 The Reach to Grasp Movement of Parkinson's Disease Subjects. Advances in Psychology, 1994, 105, 215-237.	0.1	7
212	Temporal Organization of the Prehension Components in a Bimanual Task. , 1994, , 617-631.		1
213	The reach to grasp movement of blind subjects. Experimental Brain Research, 1993, 96, 152-162.	0.7	30
214	Reach to grasp: the natural response to perturbation of object size. Experimental Brain Research, 1993, 94, 163-78.	0.7	123
215	A kinematic study of the reach to grasp movement in a subject with hemiParkinson's disease. Neuropsychologia, 1993, 31, 709-716.	0.7	23
216	Perturbation of the grasp component of a prehension movement in a subject with hemiParkinson's disease. Neuropsychologia, 1993, 31, 717-723.	0.7	11

#	Article	IF	CITATIONS
217	Temporal dissociation of the prehension pattern in Parkinson's disease. Neuropsychologia, 1993, 31, 395-402.	0.7	58
218	Generalized representation of handwriting: Evidence of effector independence. Acta Psychologica, 1993, 82, 53-68.	0.7	31
219	The bilateral reach to grasp movement. Behavioural Brain Research, 1993, 56, 43-57.	1.2	45
220	Temporal coupling between transport and grasp components during prehension movements: effects of visual perturbation. Behavioural Brain Research, 1992, 47, 71-82.	1.2	186
221	Does the type of prehension influence the kinematics of reaching. Behavioural Brain Research, 1992, 50, 7-15.	1.2	66
222	Splitting focal attention Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 837-848.	0.7	141
223	Measuring time to awareness. NeuroReport, 1991, 2, 797-800.	0.6	128
224	Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia, 1991, 29, 361-378.	0.7	252
225	TEMPORAL DISSOCIATION OF MOTOR RESPONSES AND SUBJECTIVE AWARENESS. Brain, 1991, 114, 2639-2655.	3.7	406
226	Size of the attentional focus and efficiency of processing. Acta Psychologica, 1990, 73, 195-209.	0.7	289
227	Kinematic assessment of grasping. , 0, , 20-32.		3