Sohel Rana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481790/publications.pdf Version: 2024-02-01

SOHEL PANA

#	Article	IF	CITATIONS
1	A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites. Journal of Nanomaterials, 2013, 2013, 1-19.	2.7	283
2	Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cement and Concrete Research, 2015, 73, 215-227.	11.0	231
3	A review on smart self-sensing composite materials for civil engineering applications. AIMS Materials Science, 2016, 3, 357-379.	1.4	80
4	A Review on Carbon Epoxy Nanocomposites. Journal of Reinforced Plastics and Composites, 2009, 28, 461-487.	3.1	77
5	Development of novel auxetic structures based on braided composites. Materials & Design, 2014, 61, 286-295.	5.1	74
6	Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. Composites Part A: Applied Science and Manufacturing, 2011, 42, 439-445.	7.6	72
7	A novel approach of developing micro crystalline cellulose reinforcedÂcementitious composites with enhanced microstructureÂand mechanical performance. Cement and Concrete Composites, 2017, 78, 146-161.	10.7	44
8	Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided composites. Composites Part B: Engineering, 2016, 93, 132-142.	12.0	38
9	Effect of multiscale reinforcement on the mechanical properties and microstructure of microcrystalline cellulose-carbon nanotube reinforced cementitious composites. Composites Part B: Engineering, 2018, 149, 122-134.	12.0	38
10	Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Composites Part A: Applied Science and Manufacturing, 2016, 87, 86-97.	7.6	36
11	A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose. Carbohydrate Polymers, 2018, 197, 137-146.	10.2	33
12	Ultrasonic dispersion of micro crystalline cellulose for developing cementitious composites with excellent strength and stiffness. Industrial Crops and Products, 2018, 122, 156-165.	5.2	31
13	Characterizing dispersion and long term stability of concentrated carbon nanotube aqueous suspensions for fabricating ductile cementitious composites. Powder Technology, 2017, 307, 1-9.	4.2	30
14	Fibrous and composite materials for blast protection of structural elements—A state-of-the-art review. Journal of Reinforced Plastics and Composites, 2013, 32, 1477-1500.	3.1	29
15	Novel glass fibre reinforced hierarchical composites with improved interfacial, mechanical and dynamic mechanical properties developed using cellulose microcrystals. Materials and Design, 2020, 188, 108448.	7.0	28
16	Characterization of Physical, Mechanical and Chemical Properties of Quiscal Fibres: The Influence of Atmospheric DBD Plasma Treatment. Plasma Chemistry and Plasma Processing, 2015, 35, 863-878.	2.4	23
17	A facile approach of developing micro crystalline cellulose reinforced cementitious composites with improved microstructure and mechanical performance. Powder Technology, 2018, 338, 654-663.	4.2	21
18	Mechanical and thermal transmission properties of carbon nanofiberâ€dispersed carbon/phenolic multiscale composites. Journal of Applied Polymer Science, 2013, 129, 2383-2392.	2.6	20

SOHEL RANA

#	Article	IF	CITATIONS
19	Effect of carbon nanofiber functionalization on the inâ€plane mechanical properties of carbon/epoxy multiscale composites. Journal of Applied Polymer Science, 2012, 125, 1951-1958.	2.6	16
20	Micro-structure and mechanical properties of microcrystalline cellulose-sisal fiber reinforced cementitious composites developed using cetyltrimethylammonium bromide as the dispersing agent. Cellulose, 2021, 28, 1663-1686.	4.9	16
21	Mechanical and micro-structural investigation of multi-scale cementitious composites developed using sisal fibres and microcrystalline cellulose. Industrial Crops and Products, 2020, 158, 112912.	5.2	15
22	Development of Hybrid Braided Composite Rods for Reinforcement and Health Monitoring of Structures. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	14
23	Macro- and nanodimensional plant fiber reinforcements for cementitious composites. , 2017, , 343-382.		14
24	Processing and performance of carbon/epoxy multi-scale composites containing carbon nanofibres and single walled carbon nanotubes. Journal of Polymer Research, 2013, 20, 1.	2.4	13
25	Mechanical and abrasive wear response of PTFE coated glass fabric composites. Wear, 2020, 450-451, 203267.	3.1	12
26	Single-Walled Carbon Nanotube Incorporated Novel Three Phase Carbon/Epoxy Composite with Enhanced Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 7033-7036.	0.9	11
27	Silkâ€ion Jelly: a novel ion conducting polymeric material with high conductivity and excellent mechanical stability. Polymers for Advanced Technologies, 2013, 24, 191-196.	3.2	11
28	Braided composite rods: Innovative fibrous materials for geotechnical applications. Geomechanics and Engineering, 2013, 5, 87-97.	0.9	10
29	Mechanical, dynamic-mechanical and wear performance of novel non-crimp glass fabric-reinforced liquid thermoplastic composites filled with cellulose microcrystals. Materials and Design, 2021, 212, 110276.	7.0	10
30	Mechanical behavior of carbon nanofibreâ€reinforced epoxy composites. Journal of Applied Polymer Science, 2010, 118, 2276-2283.	2.6	8
31	Excellent bonding behaviour of novel surface-tailored fibre composite rods with cementitious matrix. Bulletin of Materials Science, 2014, 37, 1013-1016.	1.7	7
32	Designing artificial anterior cruciate ligaments based on novel fibrous structures. Fibers and Polymers, 2014, 15, 181-186.	2.1	6
33	Mechanical properties of epoxy reinforced with homogeneously dispersed carbon nanofibre. International Journal of Plastics Technology, 2010, 14, 224.	3.1	5
34	Nanomaterials from Natural Products for Industrial Applications. Journal of Nanomaterials, 2017, 2017, 1-2.	2.7	5
35	Development of Smart Braided Structures for Sensing of Geotechnical Structures. Procedia Engineering, 2016, 143, 1218-1225.	1.2	4
36	Development of Multi-Scale Carbon Nanofiber and Nanotube-Based Cementitious Composites for Reliable Sensing of Tensile Stresses. Nanomaterials, 2022, 12, 74.	4.1	4

SOHEL RANA

#	Article	IF	CITATIONS
37	13 Advanced Carbon Nanotube Reinforced Multiscale Composites. , 2017, , 545-578.		3
38	Self-Sensing Hybrid Composite Rod with Braided Reinforcement for Structural Health Monitoring. Materials Science Forum, 0, 730-732, 379-384.	0.3	2
39	Fibre Reinforced Thermoplastic Composite Rods. Materials Science Forum, 0, 730-732, 331-336.	0.3	2
40	Battery monitoring system for the smart grid applications. , 2017, , .		2
41	Novel Multi-Scale Cementitious Composites Developed Using Microcrystalline Cellulose (MCC) and Sisal Fibers. Key Engineering Materials, 2019, 812, 100-106.	0.4	2
42	Development and Characterization of Microcrystalline Cellulose Based Novel Multi-scale Biocomposites. , 2018, , 159-173.		2
43	Braided Composites: Production, Properties, and Latest Developments. Composite Materials, 2015, , 97-123.	0.0	1
44	Reinforcements and Composites with Special Properties. Textile Science and Clothing Technology, 2016, , 317-373.	0.5	1