
Casey W Dunn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481710/publications.pdf Version: 2024-02-01

CASEY W/ DUNN

#	Article	IF	CITATIONS
1	Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 2008, 452, 745-749.	27.8	1,698
2	Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4261-4270.	2.6	645
3	The Genome of the Ctenophore <i>Mnemiopsis leidyi</i> and Its Implications for Cell Type Evolution. Science, 2013, 342, 1242592.	12.6	570
4	Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics, 2008, 24, 715-716.	4.1	562
5	Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 2011, 480, 364-367.	27.8	359
6	Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data. Molecular Biology and Evolution, 2020, 37, 599-603.	8.9	348
7	Animal Phylogeny and Its Evolutionary Implications. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 371-395.	8.3	323
8	Higher-level metazoan relationships: recent progress and remaining questions. Organisms Diversity and Evolution, 2011, 11, 151-172.	1.6	247
9	Spiralian Phylogeny Informs the Evolution of Microscopic Lineages. Current Biology, 2015, 25, 2000-2006.	3.9	242
10	Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proceedings of the United States of America, 2006, 103, 11195-11200.	7.1	210
11	Phylogenomic Analyses Support Traditional Relationships within Cnidaria. PLoS ONE, 2015, 10, e0139068.	2.5	191
12	The hidden biology of sponges and ctenophores. Trends in Ecology and Evolution, 2015, 30, 282-291.	8.7	173
13	A genome-scale phylogeny of the kingdom Fungi. Current Biology, 2021, 31, 1653-1665.e5.	3.9	170
14	Agalma: an automated phylogenomics workflow. BMC Bioinformatics, 2013, 14, 330.	2.6	144
15	Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141739.	2.6	144
16	Broad taxon and gene sampling indicate that chaetognaths are protostomes. Current Biology, 2006, 16, R575-R576.	3.9	128
17	A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142332.	2.6	110
18	The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	2.4	96

CASEY W DUNN

#	Article	IF	CITATIONS
19	Rooting the Animal Tree of Life. Molecular Biology and Evolution, 2021, 38, 4322-4333.	8.9	93
20	Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria). Journal of the Marine Biological Association of the United Kingdom, 2008, 88, 1663-1672.	0.8	92
21	Bioluminescent and Red-Fluorescent Lures in a Deep-Sea Siphonophore. Science, 2005, 309, 263-263.	12.6	90
22	Phylogenomic Analyses of Echinodermata Support the Sister Groups of Asterozoa and Echinozoa. PLoS ONE, 2015, 10, e0119627.	2.5	87
23	Molecular Phylogenetics of the Siphonophora (Cnidaria), with Implications for the Evolution of Functional Specialization. Systematic Biology, 2005, 54, 916-935.	5.6	86
24	Characterization of differential transcript abundance through time during Nematostella vectensis development. BMC Genomics, 2013, 14, 266.	2.8	85
25	Pairwise comparisons across species are problematic when analyzing functional genomic data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E409-E417.	7.1	77
26	Phylogenetics is the New Genetics (for Most of Biodiversity). Trends in Ecology and Evolution, 2020, 35, 415-425.	8.7	72
27	Phylogenetic Analysis of Gene Expression. Integrative and Comparative Biology, 2013, 53, 847-856.	2.0	65
28	The evolution of colony-level development in the Siphonophora (Cnidaria:Hydrozoa). Development Genes and Evolution, 2006, 216, 743-754.	0.9	53
29	Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa <i>Olindias formosus</i> and other marine organisms. Biology Open, 2015, 4, 1094-1104.	1.2	53
30	A re-examination of siphonophore terminology and morphology, applied to the description of two new prayine species with remarkable bio-optical properties. Journal of the Marine Biological Association of the United Kingdom, 2005, 85, 695-707.	0.8	49
31	The evolution of animal genomes. Current Opinion in Genetics and Development, 2015, 35, 25-32.	3.3	48
32	Complex colony-level organization of the deep-sea siphonophoreBargmannia elongata(Cnidaria,) Tj ETQq0 0 0 rg	gBT /Overlo 1.8	ock 10 Tf 50 2 47
33	Differential Gene Expression in the Siphonophore Nanomia bijuga (Cnidaria) Assessed with Multiple Next-Generation Sequencing Workflows. PLoS ONE, 2011, 6, e22953.	2.5	43
34	Conservative evolution in duplicated genes of the primate Class I ADH cluster. Gene, 2007, 392, 64-76.	2.2	40
35	Automation and Evaluation of the SOWH Test with SOWHAT. Systematic Biology, 2015, 64, 1048-1058.	5.6	40
36	A modern look at the Animal Tree of Life* . Zootaxa, 2007, 1668, 61-79.	0.5	39

CASEY W DUNN

#	Article	IF	CITATIONS
37	Assembling the spiralian tree of life. , 2009, , 52-64.		32
38	Adaptive evolution of HoxA–11 and HoxA–13 at the origin of the uterus in mammals. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2201-2207.	2.6	31
39	Morphology and development of the Portuguese man of war, Physalia physalis. Scientific Reports, 2019, 9, 15522.	3.3	30
40	Improved phylogenetic resolution within Siphonophora (Cnidaria) with implications for trait evolution. Molecular Phylogenetics and Evolution, 2018, 127, 823-833.	2.7	25
41	Animal Evolution: Are Phyla Real?. Current Biology, 2016, 26, R424-R426.	3.9	23
42	Siphonophores. Current Biology, 2009, 19, R233-R234.	3.9	22
43	Toward a statistically explicit understanding of <i>de novo</i> sequence assembly. Bioinformatics, 2013, 29, 2959-2963.	4.1	22
44	Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. EvoDevo, 2015, 6, 20.	3.2	20
45	Comparative muscle development of scyphozoan jellyfish with simple and complex life cycles. EvoDevo, 2015, 6, 11.	3.2	19
46	Insights into the Biodiversity, Behavior, and Bioluminescence of Deep-Sea Organisms Using Molecular and Maritime Technology. Oceanography, 2017, 30, 38-47.	1.0	19
47	The evolution of siphonophore tentilla for specialized prey capture in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
48	An Integrated Perspective on Phylogenetic Workflows. Trends in Ecology and Evolution, 2016, 31, 116-126.	8.7	16
49	Indoles induce metamorphosis in a broad diversity of jellyfish, but not in a crown jelly (Coronatae). PLoS ONE, 2017, 12, e0188601.	2.5	16
50	Re-evaluation of characters in Apolemiidae (Siphonophora), with description of two new species from Monterey Bay, California . Zootaxa, 2013, 3702, 201.	0.5	15
51	Comparative genomics and the diversity of life. Zoologica Scripta, 2016, 45, 5-13.	1.7	15
52	The histology of <i>Nanomia bijuga</i> (Hydrozoa: Siphonophora). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 435-449.	1.3	14
53	Stem cells in Nanomia bijuga (Siphonophora), a colonial animal with localized growth zones. EvoDevo, 2015, 6, 22.	3.2	14
54	Evolution of Gene Expression across Species and Specialized Zooids in Siphonophora. Molecular Biology and Evolution, 2022, 39, .	8.9	14

CASEY W DUNN

#	Article	IF	CITATIONS
55	Characterizing the secret diets of siphonophores (Cnidaria: Hydrozoa) using DNA metabarcoding. PLoS ONE, 2022, 17, e0267761.	2.5	13
56	Integrating siphonophores into marine foodâ€web ecology. Limnology and Oceanography Letters, 2022, 7, 81-95.	3.9	12
57	Empirical comparison of analytical approaches for identifying molecular HIV-1 clusters. Scientific Reports, 2020, 10, 18547.	3.3	11
58	Revising transcriptome assemblies with phylogenetic information. PLoS ONE, 2021, 16, e0244202.	2.5	11
59	Ctenophore trees. Nature Ecology and Evolution, 2017, 1, 1600-1601.	7.8	8
60	Evolution: Out of the Ocean. Current Biology, 2013, 23, R241-R243.	3.9	7
61	Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling. PLoS ONE, 2014, 9, e99497.	2.5	7
62	Reconsidering the phylogenetic utility of miRNA in animals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12576-12577.	7.1	6
63	Description of Tottonophyes enigmatica gen. nov., sp. nov. (Hydrozoa, Siphonophora, Calycophorae), with a reappraisal of the function and homology of nectophoral canals. Zootaxa, 2018, 4415, 452.	0.5	4
64	Longitudinal typing of molecular HIV clusters in a statewide epidemic. Aids, 2021, 35, 1711-1722.	2.2	4
65	Correction to Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142941.	2.6	3
66	The Evolutionary History of Siphonophore Tentilla: Novelties, Convergence, and Integration. Integrative Organismal Biology, 2021, 3, obab019.	1.8	3
67	Incorporating Within-Host Diversity in Phylogenetic Analyses for Detecting Clusters of New HIV Diagnoses. Frontiers in Microbiology, 2021, 12, 803190.	3.5	3
68	Beyond HIV outbreaks: protocol, rationale and implementation of a prospective study quantifying the benefit of incorporating viral sequence clustering analysis into routine public health interventions. BMJ Open, 2022, 12, e060184.	1.9	3
69	We are not so special. ELife, 2018, 7, .	6.0	2
70	Challenges in evaluating the use of viral sequence data to identify HIV transmission networks for public health. Statistical Communications in Infectious Diseases, 2020, 12, .	0.2	2
71	Statewide Longitudinal Trends in Transmitted HIV-1 Drug Resistance in Rhode Island, USA. Open Forum Infectious Diseases, 2022, 9, ofab587.	0.9	1
72	Acorn worms in a nutshell. Nature, 2015, 527, 448-449.	27.8	0