
Mats Dynesius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481667/publications.pdf Version: 2024-02-01

MATE DVNFELLIE

#	Article	IF	CITATIONS
1	Fragmentation and Flow Regulation of the World's Large River Systems. Science, 2005, 308, 405-408.	6.0	2,811
2	Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science, 1994, 266, 753-762.	6.0	1,485
3	Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9115-9120.	3.3	741
4	The Fate of Clades in a World of Recurrent Climatic Change: Milankovitch Oscillations and Evolution. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 741-777.	6.7	313
5	EFFECTS OF RIVER REGULATION ON RIVER-MARGIN VEGETATION: A COMPARISON OF EIGHT BOREAL RIVERS. , 2000, 10, 203-224.		205
6	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	4.2	200
7	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1 I	1 0,784314 0.8	4 rgBT /Over 186
8	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	0.8	178
9	Plant Species Numbers Predicted by a Topography-based Groundwater Flow Index. Ecosystems, 2005, 8, 430-441.	1.6	160
10	A Comparison of Species Richness and Traits of Riparian Plants between a Main River Channel and Its Tributaries. Journal of Ecology, 1994, 82, 281.	1.9	154
11	SUBSTRATE FORM DETERMINES THE FATE OF BRYOPHYTES IN RIPARIAN BUFFER STRIPS. , 2005, 15, 674-688.		109
12	PERSISTENCE OF WITHIN-SPECIES LINEAGES: A NEGLECTED CONTROL OF SPECIATION RATES. Evolution; International Journal of Organic Evolution, 2014, 68, 923-934.	1.1	102
13	Eighteen years of tree mortality and structural change in an experimentally fragmented Norway spruce forest. Forest Ecology and Management, 2007, 242, 306-313.	1.4	86
14	Saproxylic and nonâ€saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecological Applications, 2010, 20, 2310-2321.	1.8	78
15	Ecological effects of river regulation on mammals and birds: A review. River Research and Applications, 1994, 9, 45-53.	1.1	76
16	Effects of slash harvest on bryophytes and vascular plants in southern boreal forest clear-cuts. Journal of Applied Ecology, 2005, 42, 1194-1202.	1.9	74
17	Dating uprooted trees: comparison and application of eight methods in a boreal forest. Canadian Journal of Forest Research, 1991, 21, 655-665.	0.8	70
18	SLOPE ASPECT MODIFIES COMMUNITY RESPONSES TO CLEAR-CUTTING IN BOREAL FORESTS. Ecology, 2007, 88, 749-758.	1.5	64

MATS DYNESIUS

#	Article	IF	CITATIONS
19	Uprooting in boreal spruce forests: long-term variation in disturbance rate. Canadian Journal of Forest Research, 1993, 23, 2383-2388.	0.8	63
20	Resilience of bryophyte communities to clear-cutting of boreal stream-side forests. Biological Conservation, 2007, 135, 423-434.	1.9	59
21	High resilience of bryophyte assemblages in streamside compared to upland forests. Ecology, 2009, 90, 1042-1054.	1.5	51
22	Small Rivers Behave Like Large Rivers: Effects of Postglacial History on Plant Species Richness Along Riverbanks. Journal of Biogeography, 1991, 18, 533.	1.4	46
23	INTERCONTINENTAL SIMILARITIES IN RIPARIAN-PLANT DIVERSITY AND SENSITIVITY TO RIVER REGULATION. , 2004, 14, 173-191.		41
24	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	2.7	39
25	Microclimatic buffering by logging residues and forest edges reduces clearâ€cutting impacts on forest bryophytes. Applied Vegetation Science, 2008, 11, 345-354.	0.9	35
26	Causes of the large variation in bryophyte species richness and composition among boreal streamside forests. Journal of Vegetation Science, 2006, 17, 333-346.	1.1	34
27	Different long-term and short-term responses of land snails to clear-cutting of boreal stream-side forests. Biological Conservation, 2009, 142, 1580-1587.	1.9	34
28	Species richness correlations among primary producers in boreal forests. Diversity and Distributions, 2006, 12, 703-713.	1.9	33
29	Forest restoration by burning and gap cutting of voluntary set-asides yield distinct immediate effects on saproxylic beetles. Biodiversity and Conservation, 2017, 26, 1623-1640.	1.2	28
30	Relationships Between Plant Assemblages and Water Flow Across a Boreal Forest Landscape: A Comparison of Liverworts, Mosses, and Vascular Plants. Ecosystems, 2016, 19, 170-184.	1.6	27
31	Surface Covering of Downed Logs: Drivers of a Neglected Process in Dead Wood Ecology. PLoS ONE, 2010, 5, e13237.	1.1	27
32	Responses of eight boreal flat bug (Heteroptera: Aradidae) species to clear-cutting and forest fire. Journal of Insect Conservation, 2010, 14, 3-9.	0.8	23
33	Wood-Inhabiting Beetles in Low Stumps, High Stumps and Logs on Boreal Clear-Cuts: Implications for Dead Wood Management. PLoS ONE, 2015, 10, e0118896.	1.1	21
34	Short-term responses of beetle assemblages to wildfire in a region with more than $100\hat{a} \in f$ years of fire suppression. Insect Conservation and Diversity, 2011, 4, 142-151.	1.4	20
35	Soil humidity, potential solar radiation and altitude affect boreal beetle assemblages in dead wood. Biological Conservation, 2017, 209, 107-118.	1.9	20
36	The role of soil pH in linking groundwater flow and plant species density in boreal forest landscapes. Ecography, 2006, 29, 515-524.	2.1	19

MATS DYNESIUS

#	Article	IF	CITATIONS
37	Long-term effects of stump harvesting and landscape composition on beetle assemblages in the hemiboreal forest of Sweden. Forest Ecology and Management, 2012, 271, 75-80.	1.4	19
38	Isolation predicts compositional change after discrete disturbances in a global metaâ€study. Ecography, 2017, 40, 1256-1266.	2.1	18
39	Slow recovery of bryophyte assemblages in middle-aged boreal forests regrown after clear-cutting. Biological Conservation, 2015, 191, 101-109.	1.9	17
40	Long-term effects of clear-cutting on epigaeic beetle assemblages in boreal forests. Forest Ecology and Management, 2016, 359, 65-73.	1.4	17
41	Bryophyte community assembly on young land uplift islands – Dispersal and habitat filtering assessed using species traits. Journal of Biogeography, 2019, 46, 2188-2202.	1.4	16
42	Short-term response to stump harvesting by the ground flora in boreal clearcuts. Scandinavian Journal of Forest Research, 2017, 32, 239-245.	0.5	11
43	Responses of bryophytes to wood-ash recycling are related to their phylogeny and pH ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 21-31.	1.1	7
44	Restoration measures emulating natural disturbances alter beetle assemblages in boreal forest. Forest Ecology and Management, 2020, 462, 117934.	1.4	7
45	The European palaeoecological record of Swedish red-listed beetles. Biological Conservation, 2021, 260, 109203.	1.9	3
46	Causes of the large variation in bryophyte species richness and composition among boreal streamside forests. Journal of Vegetation Science, 2006, 17, 333.	1.1	2
47	Bryophyte species composition at the stand scale (1Âha) – Differences between secondary stands half a century after clear-cutting and older semi-natural boreal forests. Forest Ecology and Management, 2021, 482, 118883.	1.4	1