Ashoka Siddaramanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481360/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 393-399.	2.8	484
2	Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. Journal of Luminescence, 2006, 121, 179-186.	3.1	153
3	Spectroscopic investigations on the mechanism of interaction of bioactive dye with bovine serum albumin. Dyes and Pigments, 2007, 74, 665-671.	3.7	120
4	A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods. Dyes and Pigments, 2007, 73, 211-216.	3.7	114
5	Binding of the bioactive component isothipendyl hydrochloride with bovine serum albumin. Journal of Molecular Structure, 2006, 786, 46-52.	3.6	110
6	Ethylene glycol assisted hydrothermal synthesis of flower like ZnO architectures. Materials Letters, 2009, 63, 873-876.	2.6	81
7	Study of the interaction between doxepin hydrochloride and bovine serum albumin by spectroscopic techniques. International Journal of Biological Macromolecules, 2006, 39, 234-239.	7.5	74
8	Study of the interaction between doxepin and human serum albumin by spectroscopic methods. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 161-166.	3.9	55
9	Temperature dependent electrical conductivity of Fe doped ZnO nanoparticles prepared by solution combustion method. Journal of Alloys and Compounds, 2009, 485, 538-541.	5.5	55
10	One step synthesis of monoclinic VO2 (B) bundles of nanorods: Cathode for Li ion battery. Materials Characterization, 2012, 68, 58-62.	4.4	54
11	Studies on the synthesis of CdCO3 nanowires and porous CdO powder. Materials Letters, 2010, 64, 173-176.	2.6	50
12	Structural and magnetic studies of Mg(1â^'x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. Journal of Alloys and Compounds, 2013, 578, 103-109.	5.5	48
13	Nano-MgO: An Efficient Catalyst for the Synthesis of Formamides from Amines and Formic Acid Under MWI. Catalysis Letters, 2010, 138, 82-87.	2.6	38
14	Morphological Evolution of (NH4)0.5V2O5·mH2O Fibers into Belts, Triangles, and Rings. Inorganic Chemistry, 2011, 50, 7421-7428.	4.0	38
15	Surfactant free hydrothermally derived ZnO nanowires, nanorods, microrods and their characterization. Materials Science in Semiconductor Processing, 2010, 13, 21-28.	4.0	37
16	Controlled synthesis of nickel sulfide polymorphs: studies on the effect of morphology and crystal structure on OER performance. Materials Today Energy, 2020, 16, 100414.	4.7	37
17	Facile synthesis of Ni/NiO nanocomposites: the effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media. RSC Advances, 2021, 11, 14654-14664.	3.6	36
18	A versatile cost-effective and one step process to engineer ZnO superhydrophobic surfaces on Al substrate. Applied Surface Science, 2014, 311, 182-188.	6.1	35

#	Article	IF	CITATIONS
19	Reduction of KMnO4 to Mn3O4 via hydrothermal process. Materials Letters, 2010, 64, 2538-2540.	2.6	34
20	Controlled synthesis of cadmium carbonate nanowires, nanoribbons, nanorings and sphere like architectures via hydrothermal method. Materials Research Bulletin, 2010, 45, 1736-1740.	5.2	32
21	Optimization of parameters for maximizing photocatalytic behaviour of Zn1-xFexO nanoparticles for methyl orange degradation using Taguchi and Grey relational analysis Approach. Materials Today Chemistry, 2019, 12, 187-199.	3.5	31
22	Structural characterization, EPR and thermoluminescence properties of Cd1â^'xNixSiO3 nanocrystalline phosphors. Materials Research Bulletin, 2012, 47, 2306-2314.	5.2	30
23	ZnO Superstructures as an Antifungal for Effective Control of <i>Malassezia furfur</i> , Dermatologically Prevalent Yeast: Prepared by Aloe Vera Assisted Combustion Method. ACS Sustainable Chemistry and Engineering, 2015, 3, 1066-1080.	6.7	27
24	Synthesis and characterisation of microstructural α-Mn ₂ O ₃ materials. Journal of Experimental Nanoscience, 2010, 5, 285-293.	2.4	26
25	Nanostructural zinc oxide hollow spheres: A facile synthesis and catalytic properties. Inorganica Chimica Acta, 2010, 363, 3442-3447.	2.4	24
26	<i>In situ</i> addition of graphitic carbon into a NiCo ₂ O ₄ /CoO composite: enhanced catalysis toward the oxygen evolution reaction. RSC Advances, 2019, 9, 24995-25002.	3.6	24
27	One-pot synthesis of Mn3O4/graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb(II), Cd(II) and Hg(II). Journal of Materials Science, 2018, 53, 4961-4973.	3.7	23
28	Nano zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium. Journal of Environmental Chemical Engineering, 2018, 6, 6939-6946.	6.7	23
29	A new and effective approach for Fe2V4O13 nanoparticles synthesis: Evaluation of electrochemical performance as cathode for lithium secondary batteries. Journal of Alloys and Compounds, 2018, 737, 665-671.	5.5	21
30	Citric acid assisted synthesis of manganese tungstate nanoparticles for simultaneous electrochemical sensing of heavy metal ions. Materials Science in Semiconductor Processing, 2018, 86, 85-92.	4.0	21
31	Mesoporous CeO2 nanoparticles modified Glassy carbon electrode for individual and simultaneous determination of Cu(II) and Hg(II): Application to environmental samples. Materials Science in Semiconductor Processing, 2018, 84, 157-166.	4.0	21
32	MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 16069-16078.	7.1	21
33	Functionalized Co3O4 graphitic nanoparticles: A high performance electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 31380-31388.	7.1	21
34	Stabilization of metastable tetragonal phase in a rhombohedral magnetoelectric multiferroic BiFeO ₃ –PbTiO ₃ . Journal Physics D: Applied Physics, 2014, 47, 045004.	2.8	20
35	Photo-assisted mineralisation of titan yellow dye using ZnO nanorods synthesised via environmental benign route. SN Applied Sciences, 2020, 2, 1.	2.9	17
36	Ultra-trace detection of toxic heavy metal ions using graphitic carbon functionalized Co3O4 modified screen-printed electrode. Carbon Letters, 2022, 32, 181-191.	5.9	17

#	Article	IF	CITATIONS
37	Spectroscopic Studies and Life Time Measurements of Binding of a Bioactive Compound to Bovine Serum Albumin and the Effects of Common Ions and Other Drugs on Binding. Chemical and Pharmaceutical Bulletin, 2006, 54, 422-427.	1.3	16
38	Nickel tungstate nanoparticles: synthesis, characterization and electrochemical sensing of mercury(II) ions. Journal of Materials Science: Materials in Electronics, 2019, 30, 3574-3584.	2.2	15
39	Fabrication of a new calix[4]arene-functionalized Mn ₃ O ₄ nanoparticle-based modified glassy carbon electrode as a fast responding sensor towards Pb ²⁺ and Cd ²⁺ ions. Analytical Methods, 2019, 11, 813-820.	2.7	15
40	A facile low temperature hydrothermal route to CdSO4 nanotubes/rods. Materials Letters, 2009, 63, 492-495.	2.6	14
41	An efficient and a novel route for the synthesis of titania via solution combustion of peroxotitanic acid. Materials Letters, 2013, 91, 272-274.	2.6	14
42	Development of non-stoichiometric hybrid Co3S4/Co0.85Se nanocomposites for an evaluation of synergistic effect on the OER performance. Surfaces and Interfaces, 2021, 25, 101161.	3.0	14
43	Combustion Derived Nanocrystallineâ€ZrO ₂ and Its Catalytic Activity for Biginelli Condensation under Microwave Irradiation. Chinese Journal of Chemistry, 2011, 29, 1863-1868.	4.9	13
44	Tuning of superhydrophobic to hydrophilic surface: A facile one step electrochemical approach. Journal of Alloys and Compounds, 2017, 695, 1528-1531.	5.5	13
45	Studies on anion-induced structural transformations of iron(III) (Hydr)oxide micro-nanostructures and their oxygen evolution reaction performance. Solid State Sciences, 2020, 106, 106314.	3.2	12
46	Rational design and synthesis of hetero-nanostructured electrospun PU@PANI@FeS2: A surface tailored hybrid catalyst for H2 production via electrochemical splitting of water. Surfaces and Interfaces, 2020, 18, 100445.	3.0	12
47	CdSiO3:Eu3+ nanophosphor: one pot synthesis and enhancement of orange–red emission through Li+ co-doping. Journal of Materials Science: Materials in Electronics, 2018, 29, 12986-12992.	2.2	11
48	An introduction of new nanostructured Zn _{0.29} V ₂ O ₅ cathode material for lithium ion battery: a detailed studies on synthesis, characterization and lithium uptake. Materials Research Express, 2019, 6, 115035.	1.6	11
49	Engineering of highly conductive and mesoporous ZrV2O7: a cathode material for lithium secondary batteries. Journal of Solid State Electrochemistry, 2019, 23, 1201-1209.	2.5	8
50	Engineering the MxZn1â^'xO (M = Al3+, Fe3+, Cr3+) nanoparticles for visible light-assisted catalytic mineralization of methylene blue dye using Taguchi design. Chemical Papers, 2020, 74, 2719-2731.	2.2	8
51	Effect of crystallite size and clustering in influencing the stability of phases of a very large tetragonality ferroelectric system 0.6BiFeO3–0.4PbTiO3. Solid State Communications, 2013, 160, 56-60.	1.9	7
52	Studies on phase and morphological evolution of silver vanadium oxides as a function of pH: evaluation of electrochemical behavior towards quantification of Pb ²⁺ and Cd ²⁺ ions. Materials Research Express, 2017, 4, 085039.	1.6	7
53	CeO2 nanoparticle-modified electrode as a novel electrochemical interface in the quantification of Zn2+Aions at trace level: application to real sample analysis. Journal of Solid State Electrochemistry, 2018, 22, 1711-1719.	2.5	7
54	Fe ₂ V ₄ O ₁₃ Nanoparticles Based Electrochemical Sensor for the Simultaneous Determination of Guanine and Adenine at Nanomolar Concentration. Electroanalysis, 2018, 30, 1971-1982.	2.9	7

Ashoka Siddaramanna

#	Article	IF	CITATIONS
55	Hydrothermal conversion of ZnO ₂ to ZnO flowers: A mechanistic investigation and characterization. Crystal Research and Technology, 2012, 47, 1075-1082.	1.3	6
56	Enhancement of cycling stability and capacity of lithium secondary battery by engineering highly porous AlV3O9. Journal of Materials Science, 2020, 55, 1648-1658.	3.7	6
57	Scalable chemical approach to prepare crystalline Mn2V2O7 nanoparticles: introducing a new long-term cycling cathode material for lithium-ion battery. Journal of Materials Science: Materials in Electronics, 2020, 31, 19638-19646.	2.2	6
58	Glycine-nitrate derived cobalt-doped BiPO4: An efficient OER catalyst for alkaline electrochemical cells. Solid State Sciences, 2022, 124, 106803.	3.2	6
59	Electrochemical synthesis of highly ordered polypyrrole on copper modified aluminium substrates. Applied Surface Science, 2014, 307, 589-592.	6.1	5
60	One-Pot Synthesis of Novel Molybdenum Disulfide–Graphene Oxide Nanoarchitecture: An Impeccable Bifunctional Electrode for the Electrochemical Performance of Iron Redox Flow Batteries and Oxygen Evolution Reaction. Energy & Fuels, 2021, 35, 8345-8357.	5.1	5
61	Simple non-basic solution route for the preparation of zinc oxide hollow spheres. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1346-1350.	2.7	4
62	Vanadium oxide nanorings: Facile synthesis, formation mechanism and electrochemical properties. Materials Research Bulletin, 2016, 83, 542-549.	5.2	4
63	Elimination of quenching defects by facile anion doping in CdSiO3 synthesized by green fuel assisted combustion method. Optik, 2018, 154, 670-675.	2.9	4
64	Room temperature synthesis of amorphous Bi ₄ V ₂ O ₁₁ as cathode material for Li secondary batteries. Materials Research Express, 2018, 5, 115501.	1.6	4
65	MgFe ₂ O ₄ nanoparticles synthesis and characterization: application to trace level mercury(II) measurement from waste water samples. Materials Research Express, 2019, 6, 125049.	1.6	4
66	Synthesis of acid resistant Fe2V4O13-polypyrrole nanocomposite: its application towards the fabrication of disposable electrochemical sensor for the detection of As(III). Materials Research Express, 2019, 6, 126448.	1.6	4
67	Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior. Magnetochemistry, 2020, 6, 42.	2.4	4
68	Sucrose-assisted rapid synthesis of multifunctional CrVO4 nanoparticles: a new high-performance cathode material for lithium ion batteries. Ionics, 2021, 27, 39-48.	2.4	4
69	Facile two-step electrochemical approach for the fabrication of nanostructured nickel oxyhydroxide/SS and its studies on oxygen evolution reaction. Chemical Papers, 2021, 75, 2485-2494.	2.2	4
70	Enhancement of photoluminescence of Cd0.95Eu0.05SiO3 phosphor using Na+ and K+ as charge compensators. Chemical Physics, 2021, 551, 111319.	1.9	4
71	Multi-particle assembled porous nanostructured MgO: its application in fluoride removal. Materials Research Express, 2014, 1, 045004.	1.6	3
72	Validation of enhanced OER performance of the amorphous Al2O3-added Co3O4/NiO two-dimensional ternary nanocomposite. Chemical Papers, 0, , 1.	2.2	3

#	Article	IF	CITATIONS
73	Mesoporous LiTiPO4F nanoparticles: A new stable and high performance bifunctional electrocatalyst for electrochemical water splitting. Surfaces and Interfaces, 2021, 25, 101188.	3.0	2
74	Studies on Co3O4–NiO nanocomposites for potential electrocatalyst for alkaline water electrolysis. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	2
75	Investigations on the effect of NH ₄ Cl flux on the structural and optical properties of CdSiO ₃ :Eu ³⁺ nanophosphor. Materials Research Innovations, 2022, 26, 437-445.	2.3	0
76	Study the effect of Zn2+ co-doping on the structural and optical properties of CdSiO3:Eu3+ phosphor. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	0