
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aqueous dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3431-3473.	38.1	389
2	Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 2020, 22, 7168-7218.	9.0	272
3	Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248, 1317-1328.	18.8	241
4	Design, Synthesis, and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in Solar Cells Based on Nanocrystalline TiO2Films. Langmuir, 2002, 18, 952-954.	3.5	238
5	Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand. Inorganic Chemistry, 2006, 45, 4642-4653.	4.0	167
6	A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes and Pigments, 2009, 80, 307-313.	3.7	132
7	Local Proton Source in Electrocatalytic CO ₂ Reduction with [Mn(bpy–R)(CO) ₃ Br] Complexes. Chemistry - A European Journal, 2017, 23, 4782-4793.	3.3	123
8	Gemini Pyridinium Surfactants:Â Synthesis and Conductometric Study of a Novel Class of Amphiphiles1. Journal of Organic Chemistry, 2003, 68, 7651-7660.	3.2	109
9	Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5318.	4.1	107
10	Synthesis and Surface and Antimicrobial Properties of Novel Cationic Surfactants. Journal of Organic Chemistry, 2000, 65, 8197-8203.	3.2	105
11	Hydrogel Electrolytes Based on Xanthan Gum: Green Route towards Stable Dye-Sensitized Solar Cells. Nanomaterials, 2020, 10, 1585.	4.1	103
12	Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chemistry, 2017, 19, 1043-1051.	9.0	98
13	Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(<scp>i</scp>) complex. Dalton Transactions, 2016, 45, 8984-8993.	3.3	93
14	A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly(3,4-ethylenedioxythiophene) derivative. Chemical Science, 2020, 11, 1485-1493.	7.4	91
15	Unveiling iodine-based electrolytes chemistry in aqueous dye-sensitized solar cells. Chemical Science, 2016, 7, 4880-4890.	7.4	90
16	Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design. Solar Energy, 2018, 163, 251-255.	6.1	90
17	Lignin-Based Polymer Electrolyte Membranes for Sustainable Aqueous Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 8550-8560.	6.7	87
18	Polymethine Dyes in Hybrid Photovoltaics: Structure–Properties Relationships. European Journal of Organic Chemistry, 2016, 2016, 2244-2259.	2.4	84

#	Article	IF	CITATIONS
19	A UV-crosslinked polymer electrolyte membrane for quasi-solid dye-sensitized solar cells with excellent efficiency and durability. Physical Chemistry Chemical Physics, 2013, 15, 3706.	2.8	82
20	Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment. Electrochimica Acta, 2019, 302, 31-37.	5.2	81
21	Symmetric vs. asymmetric squaraines as photosensitisers in mesoscopic injection solar cells: a structure–property relationship study. Chemical Communications, 2012, 48, 2782.	4.1	79
22	A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell. Inorganica Chimica Acta, 2008, 361, 798-805.	2.4	78
23	Sublimation Not an Innocent Technique: A Case of Bis-Cyclometalated Iridium Emitter for OLED. Inorganic Chemistry, 2008, 47, 6575-6577.	4.0	78
24	Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Nearâ€infrared Dye‧ensitized Solar Cells. Advanced Energy Materials, 2021, 11, 2101598.	19.5	73
25	Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO ₂ Paste. ChemSusChem, 2020, 13, 6562-6573.	6.8	71
26	Photoanode/Electrolyte Interface Stability in Aqueous Dye‧ensitized Solar Cells. Energy Technology, 2017, 5, 300-311.	3.8	68
27	Determination of banned Sudan dyes in food samples by molecularly imprinted solid phase extractionâ€high performance liquid chromatography. Journal of Separation Science, 2009, 32, 3292-3300.	2.5	67
28	Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance. Jacs Au, 2021, 1, 409-426.	7.9	66
29	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€Solid Truly Aqueous Dyeâ€Sensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2000823.	5.8	65
30	Properties of novel azodyes containing powerful acceptor groups and thiophene moiety. Synthetic Metals, 2000, 115, 213-217.	3.9	64
31	Poly(3,4â€ethylenedioxythiophene) in Dye‣ensitized Solar Cells: Toward Solid‣tate and Platinumâ€Free Photovoltaics. Advanced Sustainable Systems, 2021, 5, 2100025.	5.3	64
32	Combining label-free and fluorescence operation of Bloch surface wave optical sensors. Optics Letters, 2014, 39, 2947.	3.3	63
33	Microwave-Assisted Synthesis of Near-Infrared Fluorescent Indole-Based Squaraines. Organic Letters, 2015, 17, 3306-3309.	4.6	62
34	ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials, 2017, 7, 381.	4.1	60
35	Novel Ligand and Device Designs for Stable Light-Emitting Electrochemical Cells Based on Heteroleptic Copper(I) Complexes. Inorganic Chemistry, 2018, 57, 10469-10479.	4.0	59
36	Design of high surface area poly(ionic liquid)s to convert carbon dioxide into ethylene carbonate. Journal of Materials Chemistry A, 2015, 3, 8508-8518.	10.3	58

#	Article	IF	CITATIONS
37	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. , 2021, 3, 1-17.		58
38	Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene ï€-conjugated quaterpyridine for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 234-242.	3.3	57
39	Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances, 2012, 2, 2748.	3.6	56
40	Synthesis and Properties of New Glucocationic Surfactants:Â Model Structures for Marking Cationic Surfactants with Carbohydrates. Journal of Organic Chemistry, 2005, 70, 9857-9866.	3.2	53
41	Solvent effect on indocyanine dyes: A computational approach. Chemical Physics, 2006, 330, 52-59.	1.9	52
42	Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications. Materials, 2016, 9, 137.	2.9	50
43	Squaraines bearing halogenated moieties as anticancer photosensitizers: Synthesis, characterization and biological evaluation. European Journal of Medicinal Chemistry, 2016, 113, 187-197.	5.5	50
44	One pot synthesis of low cost emitters with large Stokes' shift. Dyes and Pigments, 2017, 137, 152-164.	3.7	50
45	Beneficial Effect of Electron-Withdrawing Groups on the Sensitizing Action of Squaraines for <i>p</i> -Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16340-16353.	3.1	48
46	Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs. Materials Research Express, 2014, 1, 015040.	1.6	44
47	Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p -type dye-sensitized solar cells. Applied Surface Science, 2015, 356, 911-920.	6.1	44
48	Panchromatic symmetrical squaraines: a step forward in the molecular engineering of low cost blue-greenish sensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24173-24177.	2.8	41
49	Synthesis and properties of cationic surfactants with tuned hydrophylicity. Journal of Colloid and Interface Science, 2009, 340, 269-275.	9.4	40
50	Contextualizing yellow light-emitting electrochemical cells based on a blue-emitting imidazo-pyridine emitter. Polyhedron, 2018, 140, 129-137.	2.2	39
51	Blocking layer optimisation of poly(3-hexylthiopene) based Solid State Dye Sensitized Solar Cells. Organic Electronics, 2013, 14, 1882-1890.	2.6	38
52	Facile synthesis of novel blue light and large Stoke shift emitting tetradentate polyazines based on imidazo[1,5-a]pyridine. Dyes and Pigments, 2016, 128, 96-100.	3.7	37
53	Thiol–yne chemistry for 3D printing: exploiting an off-stoichiometric route for selective functionalization of 3D objects. Polymer Chemistry, 2019, 10, 5950-5958.	3.9	37
54	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Dyes and Pigments, 2009, 82, 124-129.	3.7	36

#	Article	IF	CITATIONS
55	Near-infrared Sensitization in Dye-sensitized Solar Cells. Chimia, 2013, 67, 129-135.	0.6	35
56	Near-infrared absorbing squaraine dye with extended π conjugation for dye-sensitized solar cells. Renewable Energy, 2013, 60, 672-678.	8.9	34
57	New insight into the regeneration kinetics of organic dye sensitised solar cells. Chemical Communications, 2012, 48, 2406.	4.1	32
58	Near-infrared emitting single squaraine dye aggregates with large Stokes shifts. Journal of Materials Chemistry C, 2017, 5, 7732-7738.	5.5	32
59	Novel Heptamethine Cyanine Dyes with Large Stokes' Shift for Biological Applications in the Near Infrared. Journal of Fluorescence, 2006, 16, 221-225.	2.5	31
60	Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 7198.	2.8	31
61	New substituted imidazo[1,5-a]pyridine and imidazo[5,1-a]isoquinoline derivatives and their application in fluorescence cell imaging. Dyes and Pigments, 2018, 157, 298-304.	3.7	31
62	Synthesis and Characterization of Highly Fluorinated Gemini Pyridinium Surfactants. European Journal of Organic Chemistry, 2009, 2009, 3167-3177.	2.4	30
63	Facile synthesis of novel blue light and large Stoke shift emitting tetradentate polyazines based on imidazo[1,5- a]pyridine – Part 2. Dyes and Pigments, 2017, 143, 284-290.	3.7	30
64	Thermosetting Polyurethane Resins as Low-Cost, Easily Scalable, and Effective Oxygen and Moisture Barriers for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 54862-54875.	8.0	30
65	Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5061-5073.	6.7	29
66	Design and Development of Novel Linker for PbS Quantum Dots/TiO ₂ Mesoscopic Solar cell. ACS Applied Materials & Interfaces, 2011, 3, 3264-3267.	8.0	28
67	Theoretical and experimental determination of the absorption and emission spectra of a prototypical indolenine-based squaraine dye. Physical Chemistry Chemical Physics, 2014, 16, 2390-2398.	2.8	28
68	A Simple Synthetic Route to Obtain Pure <i>Trans</i> â€Ruthenium(II) Complexes for Dyeâ€Sensitized Solar Cell Applications. ChemSusChem, 2013, 6, 2170-2180.	6.8	27
69	Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with Aggregationâ€Induced Emission (AIE) Properties. Chemistry - an Asian Journal, 2019, 14, 896-903.	3.3	27
70	Preparation and application of a β-cyclodextrin-disperse/reactive dye complex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 463-470.	1.6	26
71	Tethering of Modified Reichardt's Dye on SBA-15 Mesoporous Silica:Â The Effect of the Linker Flexibility. Langmuir, 2007, 23, 2261-2268.	3.5	25
72	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Part 2. Dyes and Pigments, 2009, 83, 396-402.	3.7	25

CLAUDIA BAROLO

#	Article	IF	CITATIONS
73	Dicyanovinyl and Cyano-Ester Benzoindolenine Squaraine Dyes: The Effect of the Central Functionalization on Dye-Sensitized Solar Cell Performance. Energies, 2016, 9, 486.	3.1	25
74	Excited state photophysics of squaraine dyes for photovoltaic applications: an alternative deactivation scenario. Journal of Materials Chemistry C, 2018, 6, 2778-2785.	5.5	25
75	Disclosing the Properties of a New Ce(III)-Based MOF: Ce ₂ (NDC) ₃ (DMF) ₂ . Crystal Growth and Design, 2019, 19, 787-796.	3.0	25
76	Mesoporous silica nanoparticles incorporating squaraine-based photosensitizers: a combined experimental and computational approach. Dalton Transactions, 2018, 47, 3038-3046.	3.3	24
77	Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	4.5	24
78	Modified P3HT materials as hole transport layers for flexible perovskite solar cells. Journal of Power Sources, 2021, 494, 229735.	7.8	23
79	Spectroscopic Study on the Surface Properties and Catalytic Performances of Palladium Nanoparticles in Poly(ionic liquid)s. Journal of Physical Chemistry C, 2016, 120, 1683-1692.	3.1	21
80	Halogenated imidazo[1,5-a]pyridines: chemical structure and optical properties of a promising luminescent scaffold. Dyes and Pigments, 2019, 171, 107713.	3.7	21
81	Electrocatalysis in the oxidation of acetaminophen with an electrochemically activated glassy carbon electrode. Electrochimica Acta, 2016, 192, 139-147.	5.2	20
82	Designing Squaraines to Control Charge Injection and Recombination Processes in NiOâ€based Dyeâ€Sensitized Solar Cells. ChemSusChem, 2017, 10, 2385-2393.	6.8	20
83	Rationalization of Dye Uptake on Titania Slides for Dyeâ€ S ensitized Solar Cells by a Combined Chemometric and Structural Approach. ChemSusChem, 2014, 7, 3039-3052.	6.8	19
84	Controlled Atmosphere in Food Packaging Using Ethyleneâ~'α-Cyclodextrin Inclusion Complexes Dispersed in Photocured Acrylic Films. Industrial & Engineering Chemistry Research, 2016, 55, 579-585.	3.7	19
85	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	3.1	19
86	Fluorescence anisotropy analysis of protein–antibody interaction. Dyes and Pigments, 2009, 83, 225-229.	3.7	18
87	Highâ€Throughput Preparation of New Photoactive Nanocomposites. ChemSusChem, 2016, 9, 1279-1289.	6.8	18
88	Interaction of squaraine dyes with proteins: Looking for more efficient fluorescent turn-on probes. Dyes and Pigments, 2021, 184, 108873.	3.7	18
89	Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships. Energies, 2021, 14, 2279.	3.1	18
90	Multivariate Analysis Identifying [Cu(N^N)(P^P)] ⁺ Design and Device Architecture Enables Firstâ€Class Blue and White Lightâ€Emitting Electrochemical Cells. Advanced Materials, 2022, 34, e2109228.	21.0	18

#	Article	IF	CITATIONS
91	Effects of additives on the dyeing of polyamide fibres. Part II: Methyl-β-cyclodextrin. Dyes and Pigments, 2006, 69, 7-12.	3.7	17
92	Effect of Alkyl Chain Length on the Sensitizing Action of Substituted Non ymmetric Squaraines for pâ€Type Dye‧ensitized Solar Cells. ChemElectroChem, 2017, 4, 2385-2397.	3.4	17
93	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€Solid Truly Aqueous Dyeâ€Sensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2170074.	5.8	16
94	Charge-transfer complexes of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with amino molecules in polar solvents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 75-82.	3.9	15
95	Neutron irradiated perovskite films and solar cells on PET substrates. Nano Energy, 2022, 93, 106879.	16.0	15
96	Application of an electro-activated glassy-carbon electrode to the determination of acetaminophen (paracetamol) in surface waters. Electrochimica Acta, 2018, 284, 279-286.	5.2	14
97	Drug release kinetics from biodegradable UV-transparent hollow calcium-phosphate glass fibers. Materials Letters, 2017, 191, 116-118.	2.6	13
98	Squaraine dyes as fluorescent turn-on sensors for the detection of porcine gastric mucin: A spectroscopic and kinetic study. Journal of Photochemistry and Photobiology B: Biology, 2020, 205, 111838.	3.8	13
99	Matching molecular and optical multipoles in photoisomerizable nonlinear systems. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1276.	2.1	12
100	Synthesis, Physicochemical Characterization, and Interaction with DNA of Longâ€Alkylâ€Chain Gemini Pyridinium Surfactants. ChemPlusChem, 2015, 80, 952-962.	2.8	12
101	The design, synthesis and characterization of a novel acceptor for real time polymerase chain reaction using both computational and experimental approaches. Dyes and Pigments, 2009, 83, 111-120.	3.7	11
102	Electrolyte containing lithium cation in squaraine-sensitized solar cells: interactions and consequences for performance and charge transfer dynamics. Physical Chemistry Chemical Physics, 2017, 19, 27670-27681.	2.8	11
103	Strategies to increase the quantum yield: Luminescent methoxylated imidazo[1,5-a]pyridines. Dyes and Pigments, 2021, 192, 109455.	3.7	11
104	Accessibility of dye molecules embedded in surfactant-silica hybrid materials in both powder and film forms. Sensors and Actuators B: Chemical, 2004, 100, 107-111.	7.8	10
105	Effect of Sodium Hydroxide Pretreatment of NiO _x Cathodes on the Performance of Squaraine‣ensitized <i>p</i> ‶ype Dye‣ensitized Solar Cells. ChemistrySelect, 2018, 3, 1066-1075.	1.5	10
106	A new ruthenium black dye design with improved optical properties for transparent dye sensitized solar devices. Dalton Transactions, 2017, 46, 16390-16393.	3.3	9
107	Effects of Reabsorption due to Surface Concentration in Highly Resonant Photonic Crystal Fluorescence Biosensors. Journal of Physical Chemistry C, 2018, 122, 26281-26287.	3.1	9
108	Chemichromic azodye from 2,4-dinitrobenzenediazonium o-benzenedisulfonimide and Î ³ -acid for monitoring blood parameters: structural study and synthesis optimisation. Dyes and Pigments, 2002, 54, 131-140.	3.7	8

#	Article	IF	CITATIONS
109	Structural characterisation of Nitrazine Yellow by NMR spectroscopy. Dyes and Pigments, 2003, 57, 87-95.	3.7	8
110	Fluorescent trifluoromethylated imidazo[1,5-a]pyridines and their application in luminescent down-shifting conversion. Journal of Luminescence, 2022, 242, 118529.	3.1	8
111	One-pot synthesis and characterization of HMS silica carrying Disperse-Red-1 (DR1) covalently bonded to the inner surface. Comptes Rendus Chimie, 2005, 8, 655-661.	0.5	7
112	A multi-technique comparison of the electronic properties of pristine and nitrogen-doped polycrystalline SnO ₂ . Physical Chemistry Chemical Physics, 2016, 18, 22617-22627.	2.8	7
113	Effect of Sensitization on the Electrochemical Properties of Nanostructured NiO. Coatings, 2018, 8, 232.	2.6	7
114	Microwave-Assisted Synthesis, Optical and Theoretical Characterization of Novel 2-(imidazo[1,5-a]pyridine-1-yl)pyridinium Salts. Chemistry, 2021, 3, 714-727.	2.2	7
115	Polymeric Supports for Controlled Release of Ethylene for Food Industry. International Polymer Processing, 2016, 31, 570-576.	0.5	7
116	Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120909.	3.9	7
117	Novel azobenzene derivatives containing a glucopyranoside moiety. Part I: synthesis, characterisation and mutagenic properties. Dyes and Pigments, 2000, 46, 29-36.	3.7	6
118	2â€(4â€methylpyridinâ€2â€yl)â€1 <i>H</i> â€benzimidazole derivatives. Part I. Xâ€Ray structural analysis. Journal Heterocyclic Chemistry, 2003, 40, 129-133.	of 2.6	6
119	Synthesis, optical characterization and crystal and molecular X-ray structure of a phenylazojulolidine derivative. Dyes and Pigments, 2012, 92, 1177-1183.	3.7	6
120	Influence of the Conditions of Sensitization on the Characteristics ofp-DSCs Sensitized with Asymmetric Squaraines. Journal of the Electrochemical Society, 2017, 164, H1099-H1111.	2.9	6
121	NiO/ZrO ₂ nanocomposites as photocathodes of tandem DSCs with higher photoconversion efficiency with respect to parent single-photoelectrode p-DSCs. Sustainable Energy and Fuels, 2021, 5, 4736-4748.	4.9	6
122	2â€(4â€methylpyridinâ€2â€yl)â€1 <i>H</i> â€benzimidazole derivatives. Part II, ^l H nmr characterizati Journal of Heterocyclic Chemistry, 2003, 40, 649-654.	on. 2.6	5
123	Sodium Hydroxide Pretreatment as an Effective Approach to Reduce the Dye/Holes Recombination Reaction in P-Type DSCs. Frontiers in Chemistry, 2019, 7, 99.	3.6	5
124	Emerging Photovoltaic Technologies and Eco-Design—Criticisms and Potential Improvements. , 0, , .		5
125	Polymorphism and solid state peculiarities in imidazo[1,5-a]pyridine core deriving compounds: An analysis of energetic and structural driving forces. Journal of Molecular Structure, 2022, 1253, 132175.	3.6	5
126	Rationalization of TS-1 synthesis through the design of experiments. Inorganic Chemistry Frontiers, 2022, 9, 3372-3383.	6.0	5

#	Article	IF	CITATIONS
127	Spectroscopic investigation of squaraine dyes. Proceedings of SPIE, 2017, , .	0.8	4
128	Water based surfactant-assisted synthesis of thienylpyridines and thienylbipyridine intermediates. Dyes and Pigments, 2017, 137, 468-479.	3.7	4
129	Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor. Chemosphere, 2018, 204, 556-562.	8.2	4
130	Influence of start-up phase of an incinerator on inorganic composition and lead isotope ratios of the atmospheric PM10. Chemosphere, 2021, 266, 129091.	8.2	4
131	Designing Artificial Fluorescent Proteins: Squaraineâ€⊾mrR Biophosphors for High Performance Deepâ€Red Biohybrid Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	14.9	4
132	Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models. Molecules, 2022, 27, 3856.	3.8	4
133	Synthesis, characterization and crystal structure of 6-Chloro-4,4′-dimethyl-2,2′-bipyridine and 4,4′-Dimethyl 2,2′-bipyridine N-Oxide. Journal of Molecular Structure, 2016, 1107, 337-343.	3.6	2
134	Synthesis and Crystal Structure of Bis(2-phenylpyridine-C,N')-bis(acetonitrile)iridium(III)hexafluorophosphate Showing Three Anion/Cation Couples in the Asymmetric Unit. Crystals, 2019, 9, 617.	2.2	2
135	Covalent bonding of Disperse Red 1 in HMS silica: synthesis and characterization Studies in Surface Science and Catalysis, 2003, , 375-378.	1.5	1
136	Spectroscopic investigation of the encapsulation and the reactivity towards NO of a Co(ii)-porphyrin inside a cross-linked polymeric matrix. Physical Chemistry Chemical Physics, 2009, 11, 4060.	2.8	1
137	Solid-Phase Synthesis of Asymmetric Cyanine Dyes. Current Organic Chemistry, 2021, 25, 1739-1754.	1.6	1
138	A new auspicious scaffold for small dyes and fluorophores. Dyes and Pigments, 2022, 197, 109849.	3.7	1
139	Accessibility to gases of dye molecules in hybrid surfactant-silica mesophases. Studies in Surface Science and Catalysis, 2004, 154, 3010-3016.	1.5	0
140	Ruthenium sensitizers based on heteroaromatic conjugated bypiridines for dye-sensitized solar cells. Proceedings of SPIE, 2008, , .	0.8	0
141	Frontispiece: Local Proton Source in Electrocatalytic CO ₂ Reduction with [Mn(bpy–R)(CO) ₃ Br] Complexes. Chemistry - A European Journal, 2017, 23, .	3.3	0
142	Hollow resorbable fiber for combined light and drug delivery: fiber development and analysis of release kinetics. , 2017, , .		0
143	Polyurethanes as low cost and efficient encapsulants for Perovskite Solar Cells. , 0, , .		0
144	Near Infra-Red Dyes in Dye-Sensitized Solar Cells: from Panchromatic Absorption to Completely Transparent DSSCs. , 0, , .		0

#	Article	IF	CITATIONS
145	Effect of the Sintering Procedure on the Photoelectrochemical Performances of Nanostructured Mixed Oxides as Photocathodes of p and Tandem Dye-Sensitized Solar Cells with Superior Conversion Properties. , 0, , .		0
146	Ultrafast spectroscopy of transparent dye-sensitized solar cells designed for the near-infrared. , 2020, , .		0
147	Perovskite films and solar cells on PET substrates for space applications: stability study under neutron irradiation. , 0, , .		0
148	Toward non-intrusive BIPV: strategies for NIR-selective DSSCs. , 0, , .		0
149	Effect of Out-of-Plane Alkyl Chains in Dye-Sensitized Solar Cell Efficiency: a Structure-Property Relationship in Novel Perimidine-Based Squaraine Dyes. , 0, , .		0
150	Insights on component optimization to reach color neutral and highly transparent near-infrared dye sensitized solar cells. , 0, , .		0