Hong-Wei Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GelNB molecular coating as a biophysical barrier to isolate intestinal irritating metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease. Bioactive Materials, 2023, 19, 251-267.	8.6	10
2	In ytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioengineering and Translational Medicine, 2022, 7, e10250.	3.9	14
3	Cell-subpopulation alteration and FGF7 activation regulate the function of tendon stem/progenitor cells in 3D microenvironment revealed by single-cell analysis. Biomaterials, 2022, 280, 121238.	5.7	11
4	"Musical dish―efficiently induces osteogenic differentiation of mesenchymal stem cells through music derived microstretch with variable frequency. Bioengineering and Translational Medicine, 2022, 7, e10291.	3.9	4
5	OUP accepted manuscript. Stem Cells Translational Medicine, 2022, , .	1.6	1
6	Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials, 2022, 282, 121414.	5.7	7
7	Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint. Nano Letters, 2022, 22, 2309-2319.	4.5	18
8	Polyglutamic Acidâ€Based Elastic and Tough Adhesive Patch Promotes Tissue Regeneration through In Situ Macrophage Modulation. Advanced Science, 2022, 9, e2106115.	5.6	14
9	Biomimetic macroporous hydrogel with a triple-network structure for full-thickness skin regeneration. Applied Materials Today, 2022, 27, 101442.	2.3	7
10	Advanced hydrogels for the repair of cartilage defects and regeneration. Bioactive Materials, 2021, 6, 998-1011.	8.6	201
11	An Off-the-Shelf Tissue Engineered Cartilage Composed of Optimally Sized Pellets of Cartilage Progenitor/Stem Cells. ACS Biomaterials Science and Engineering, 2021, 7, 881-892.	2.6	7
12	Innovations in Orthopedic Biomaterials and Regenerative Medicine in China. ACS Biomaterials Science and Engineering, 2021, 7, 804-805.	2.6	1
13	Advanced Strategies of Biomimetic Tissueâ€Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2100408.	3.9	66
14	H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Research, 2021, 9, 30.	5.4	17
15	Shapeâ€Engineerable Silk Fibroin Papers for Ideal Substrate Alternatives of Plastic Electronics. Advanced Functional Materials, 2021, 31, 2104088.	7.8	18
16	Wound dressing gel with resisted bacterial penetration and enhanced re-epithelization for corneal epithelial-stromal regeneration. Applied Materials Today, 2021, 24, 101119.	2.3	13
17	Light-induced osteogenic differentiation of BMSCs with graphene/TiO2 composite coating on Ti implant. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111996.	2.5	15
18	A long-term retaining molecular coating for corneal regeneration. Bioactive Materials, 2021, 6, 4447-4454.	8.6	24

#	Article	IF	CITATIONS
19	The personalized application of biomaterials based on age and sexuality specific immune responses. Biomaterials, 2021, 278, 121177.	5.7	7
20	Biomimetic Joint Paint for Efficient Cartilage Repair by Simultaneously Regulating Cartilage Degeneration and Regeneration in Pigs. ACS Applied Materials & Interfaces, 2021, 13, 54801-54816.	4.0	17
21	Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Cellular and Molecular Life Sciences, 2021, 78, 8127-8155.	2.4	8
22	Current advances in microsphere based cell culture and tissue engineering. Biotechnology Advances, 2020, 39, 107459.	6.0	38
23	<i>Ezh2</i> Ameliorates Osteoarthritis by Activating TNFSF13B. Journal of Bone and Mineral Research, 2020, 35, 956-965.	3.1	19
24	Targeting downstream subcellular YAP activity as a function of matrix stiffness with Verteporfin-encapsulated chitosan microsphere attenuates osteoarthritis. Biomaterials, 2020, 232, 119724.	5.7	50
25	Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials, 2020, 258, 120287.	5.7	149
26	Sodium lactate promotes stemness of human mesenchymal stem cells through KDM6B mediated glycolytic metabolism. Biochemical and Biophysical Research Communications, 2020, 532, 433-439.	1.0	9
27	Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas. Bone Research, 2020, 8, 38.	5.4	57
28	Atlas of Musculoskeletal Stem Cells with the Soft and Hard Tissue Differentiation Architecture. Advanced Science, 2020, 7, 2000938.	5.6	6
29	Tissue-Adhesive Paint of Silk Microparticles for Articular Surface Cartilage Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 22467-22478.	4.0	21
30	"Allâ€inâ€One―Gel System for Whole Procedure of Stemâ€Cell Amplification and Tissue Engineering. Small, 2020, 16, e1906539.	5.2	26
31	High-Resolution Dissection of Chemical Reprogramming from Mouse Embryonic Fibroblasts into Fibrocartilaginous Cells. Stem Cell Reports, 2020, 14, 478-492.	2.3	7
32	Characterization and Comparison of Postnatal Rat Meniscus Stem Cells at Different Developmental Stages. Stem Cells Translational Medicine, 2019, 8, 1318-1329.	1.6	7
33	Knitted Silk-Collagen Scaffold Incorporated with Ligament Stem/Progenitor Cells Sheet for Anterior Cruciate Ligament Reconstruction and Osteoarthritis Prevention. ACS Biomaterials Science and Engineering, 2019, 5, 5412-5421.	2.6	18
34	Dissecting cell diversity and connectivity in skeletal muscle for myogenesis. Cell Death and Disease, 2019, 10, 427.	2.7	11
35	A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nature Communications, 2019, 10, 2060.	5.8	517
36	Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin. American Journal of Sports Medicine, 2019, 47, 1722-1733.	1.9	125

#	Article	IF	CITATIONS
37	The Plasticity of Mesenchymal Stem Cells in Regulating Surface HLA-I. IScience, 2019, 15, 66-78.	1.9	37
38	Nano genome altas (NGA) of body wide organ responses. Biomaterials, 2019, 205, 38-49.	5.7	16
39	Concise Review: Stem Cell Fate Guided By Bioactive Molecules for Tendon Regeneration. Stem Cells Translational Medicine, 2018, 7, 404-414.	1.6	41
40	Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomaterialia, 2018, 71, 168-183.	4.1	50
41	Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials, 2018, 175, 44-60.	5.7	51
42	Transplantation of BDNF Gene Recombinant Mesenchymal Stem Cel Is and Adhesive Peptide-modified Hydrogel Scaffold for Spinal Cord Repa ir. Current Gene Therapy, 2018, 18, 29-39.	0.9	34
43	Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair. Applied Materials Today, 2018, 13, 32-44.	2.3	84
44	Gefitinib for Epidermal Growth Factor Receptor Activated Osteoarthritis Subpopulation Treatment. EBioMedicine, 2018, 32, 223-233.	2.7	26
45	Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: A preliminary study. Acta Biomaterialia, 2017, 53, 307-317.	4.1	22
46	Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair. Acta Biomaterialia, 2017, 51, 317-329.	4.1	91
47	Intratendon Delivery of Leukocyte-Poor Platelet-Rich Plasma Improves Healing Compared With Leukocyte-Rich Platelet-Rich Plasma in a Rabbit Achilles Tendinopathy Model. American Journal of Sports Medicine, 2017, 45, 1909-1920.	1.9	85
48	Kdm6b regulates cartilage development and homeostasis through anabolic metabolism. Annals of the Rheumatic Diseases, 2017, 76, 1295-1303.	0.5	51
49	<i>Fos</i> Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon. Stem Cells Translational Medicine, 2017, 6, 2009-2019.	1.6	16
50	From "Bench to Bedside― Current Advancement on Large-Scale Production of Mesenchymal Stem Cells. Stem Cells and Development, 2017, 26, 1662-1673.	1.1	61
51	Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Research and Therapy, 2017, 8, 189.	2.4	326
52	Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Scientific Reports, 2016, 6, 22946.	1.6	30
53	Stepwise Differentiation of Mesenchymal Stem Cells Augments Tendon-Like Tissue Formation and Defect Repair In Vivo. Stem Cells Translational Medicine, 2016, 5, 1106-1116.	1.6	85
54	Single-cell analysis reveals a nestin ⁺ tendon stem/progenitor cell population with strong tenogenic potentiality. Science Advances, 2016, 2, e1600874.	4.7	100

#	Article	IF	CITATIONS
55	Isolation of Live Premature Senescent Cells Using FUCCI Technology. Scientific Reports, 2016, 6, 30705.	1.6	8
56	Pharmacological Regulation of In Situ Tissue Stem Cells Differentiation for Soft Tissue Calcification Treatment. Stem Cells, 2016, 34, 1083-1096.	1.4	27
57	Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function. Oncotarget, 2016, 7, 28286-28300.	0.8	21
58	3Dâ€Printed Atsttrinâ€Incorporated Alginate/Hydroxyapatite Scaffold Promotes Bone Defect Regeneration with TNF/TNFR Signaling Involvement. Advanced Healthcare Materials, 2015, 4, 1701-1708.	3.9	60
59	Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis. Biomaterials, 2015, 62, 76-87.	5.7	35
60	Electrospun scaffolds for multiple tissues regeneration inÂvivo through topography dependent induction of lineage specific differentiation. Biomaterials, 2015, 44, 173-185.	5.7	129
61	Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials, 2015, 53, 239-250.	5.7	113
62	Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials, 2015, 53, 716-730.	5.7	154
63	17βâ€Estradiol Protects Human Eyelidâ€Derived Adipose Stem Cells against Cytotoxicity and Increases Transplanted Cell Survival in Spinal Cord injury. Journal of Cellular and Molecular Medicine, 2014, 18, 326-343.	1.6	20
64	<i>Scleraxis</i> -Overexpressed Human Embryonic Stem Cell–Derived Mesenchymal Stem Cells for Tendon Tissue Engineering with Knitted Silk-Collagen Scaffold. Tissue Engineering - Part A, 2014, 20, 1583-1592.	1.6	68
65	Intra-Articular Injection of Human Meniscus Stem/Progenitor Cells Promotes Meniscus Regeneration and Ameliorates Osteoarthritis Through Stromal Cell-Derived Factor-1/CXCR4-Mediated Homing. Stem Cells Translational Medicine, 2014, 3, 387-394.	1.6	86
66	Long-term effects of knitted silk–collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials, 2014, 35, 8154-8163.	5.7	84
67	Crucial transcription factors in tendon development and differentiation: their potential for tendon regeneration. Cell and Tissue Research, 2014, 356, 287-298.	1.5	79
68	The amelioration of cartilage degeneration by ADAMTS-5 inhibitor delivered in a hyaluronic acid hydrogel. Biomaterials, 2014, 35, 2827-2836.	5.7	64
69	The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomaterialia, 2013, 9, 9317-9329.	4.1	126
70	Mesenchymal Stem Cells for Bone Repair. , 2013, , 199-205.		0
71	Osteoarthritis Prevention Through Meniscal Regeneration Induced by Intra-Articular Injection of Meniscus Stem Cells. Stem Cells and Development, 2013, 22, 2071-2082.	1.1	52
72	Allogenous Tendon Stem/Progenitor Cells in Silk Scaffold for Functional Shoulder Repair. Cell Transplantation, 2012, 21, 943-958.	1.2	119

#	Article	IF	CITATIONS
73	Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes. Scientific Reports, 2012, 2, 977.	1.6	113
74	Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 2012, 23, 485102.	1.3	86
75	Mineralization of Collagenâ€Coated Electrospun Poly(lactideâ€∢i>coâ€glycolide) Nanofibrous Mesh to Enhance Growth and Differentiation of Osteoblasts and Bone Marrow Mesenchymal Stem Cells. Advanced Engineering Materials, 2012, 14, B123.	1.6	15
76	The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration. Biomaterials, 2010, 31, 7239-7249.	5.7	150
77	The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials, 2010, 31, 8964-8973.	5.7	146
78	In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials, 2010, 31, 5953-5965.	5.7	134
79	Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials, 2008, 29, 3683-3692.	5.7	190
80	Osteoarthritis and therapy. Arthritis and Rheumatism, 2006, 55, 493-500.	6.7	98