

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7480530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cation-Deficient Spinel ZnMn ₂ O ₄ Cathode in Zn(CF ₃ SO ₃) ₂ Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society, 2016, 138, 12894-12901.	6.6	1,451
2	Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials, 2020, 5, 229-252.	23.3	1,167
3	Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 2017, 117, 10121-10211.	23.0	1,157
4	Reversible epitaxial electrodeposition of metals in battery anodes. Science, 2019, 366, 645-648.	6.0	1,097
5	High-capacity aqueous zinc batteries using sustainable quinone electrodes. Science Advances, 2018, 4, eaao1761.	4.7	716
6	Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4, 365-373.	19.8	681
7	Advanced Organic Electrode Materials for Rechargeable Sodiumâ€ŀon Batteries. Advanced Energy Materials, 2017, 7, 1601792.	10.2	438
8	High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy and Environmental Science, 2017, 10, 552-557.	15.6	391
9	All Organic Sodiumâ€lon Batteries with Na ₄ C ₈ H ₂ O ₆ . Angewandte Chemie - International Edition, 2014, 53, 5892-5896.	7.2	363
10	3D Porous γâ€Fe ₂ O ₃ @C Nanocomposite as Highâ€Performance Anode Material of Naâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1401123.	10.2	320
11	A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for Highâ€Performance Lithium–Sulfur Batteries with Unconventional Configurations. Advanced Materials, 2016, 28, 9629-9636.	11.1	308
12	Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries. Advanced Materials, 2017, 29, 1607007.	11.1	247
13	Oxocarbon Salts for Fast Rechargeable Batteries. Angewandte Chemie - International Edition, 2016, 55, 12528-12532.	7.2	238
14	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	11.7	233
15	Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Research, 2013, 6, 38-46.	5.8	232
16	Rechargeable Roomâ€Temperature Na–CO ₂ Batteries. Angewandte Chemie - International Edition, 2016, 55, 6482-6486.	7.2	202
17	Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. Nano Letters, 2015, 15, 5982-5987.	4.5	201
18	Quasi–solid state rechargeable Na-CO ₂ batteries with reduced graphene oxide Na anodes. Science Advances, 2017, 3, e1602396.	4.7	193

Qing Zhao

#	Article	IF	CITATIONS
19	Facile Spraying Synthesis and Highâ€Performance Sodium Storage of Mesoporous MoS ₂ /C Microspheres. Advanced Functional Materials, 2016, 26, 911-918.	7.8	189
20	Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Science Advances, 2018, 4, eaau8131.	4.7	186
21	A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a Highâ€Performance Rechargeable Lithiumâ€ion Battery. Angewandte Chemie - International Edition, 2016, 55, 6428-6432.	7.2	183
22	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie - International Edition, 2021, 60, 23357-23364.	7.2	179
23	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 992-996.	7.2	178
24	An Insoluble Benzoquinoneâ€Based Organic Cathode for Use in Rechargeable Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 12561-12565.	7.2	177
25	Sulfur Nanodots Electrodeposited on Ni Foam as High-Performance Cathode for Li–S Batteries. Nano Letters, 2015, 15, 721-726.	4.5	175
26	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nature Energy, 2021, 6, 398-406.	19.8	169
27	Potassium–Sulfur Batteries: A New Member of Room-Temperature Rechargeable Metal–Sulfur Batteries. Inorganic Chemistry, 2014, 53, 9000-9005.	1.9	163
28	Highâ€Performance Organic Lithium Batteries with an Etherâ€Based Electrolyte and 9,10â€Anthraquinone (AQ)/CMKâ€3 Cathode. Advanced Science, 2015, 2, 1500018.	5.6	155
29	Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Science Advances, 2020, 6, eabb1122.	4.7	143
30	Rechargeable Lithium Metal Batteries with an Inâ€Built Solidâ€6tate Polymer Electrolyte and a High Voltage/Loading Niâ€Rich Layered Cathode. Advanced Materials, 2020, 32, e1905629.	11.1	140
31	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	15.6	138
32	Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale, 2014, 6, 2827-2832.	2.8	133
33	Semiconducting Metal–Organic Polymer Nanosheets for a Photoinvolved Li–O ₂ Battery under Visible Light. Journal of the American Chemical Society, 2021, 143, 1941-1947.	6.6	124
34	Selenium Phosphide (Se ₄ P ₄) as a New and Promising Anode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1601973.	10.2	122
35	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie - International Edition, 2020, 59, 3048-3052.	7.2	122
36	Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries. Nanoscale, 2015, 7, 2770-2776.	2.8	118

QING ZHAO

#	Article	IF	CITATIONS
37	High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chemical Communications, 2015, 51, 10244-10247.	2.2	117
38	Recycling Application of Li–MnO ₂ Batteries as Rechargeable Lithium–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 4338-4343.	7.2	109
39	An Alternative to Lithium Metal Anodes: Nonâ€dendritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie - International Edition, 2018, 57, 14796-14800.	7.2	102
40	Stabilizing polymer electrolytes in high-voltage lithium batteries. Nature Communications, 2019, 10, 3091.	5.8	98
41	Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes. Industrial & Engineering Chemistry Research, 2016, 55, 5795-5804.	1.8	91
42	Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3320-3324.	5.2	86
43	Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26053-26060.	3.3	82
44	Dynamic interphase–mediated assembly for deep cycling metal batteries. Science Advances, 2021, 7, eabl3752.	4.7	81
45	Size effect of lithium peroxide on charging performance of Li–O ₂ batteries. Nanoscale, 2014, 6, 177-180.	2.8	80
46	Physical Orphaning versus Chemical Instability: Is Dendritic Electrodeposition of Li Fatal?. ACS Energy Letters, 2019, 4, 1349-1355.	8.8	80
47	2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorganic Chemistry Frontiers, 2014, 1, 193-199.	3.0	79
48	Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a Highâ€Performance Anode for Sodiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1652-1655.	1.7	75
49	Solid-state polymer electrolytes stabilized by task-specific salt additives. Journal of Materials Chemistry A, 2019, 7, 7823-7830.	5.2	70
50	On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nature Communications, 2021, 12, 6034.	5.8	70
51	Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Research, 2015, 8, 184-192.	5.8	68
52	Layered Na ₂ Ti ₃ O ₇ /MgNaTi ₃ O ₇ /Mg _{0.5} Na Nanoribbons as High-Performance Anode of Rechargeable Mg-Ion Batteries. ACS Energy Letters, 2016, 1, 1165-1172.	aTi ₃	O <sub< td=""></sub<>
53	Textured Electrodes: Manipulating Builtâ€In Crystallographic Heterogeneity of Metal Electrodes via Severe Plastic Deformation. Advanced Materials, 2022, 34, e2106867.	11.1	62
54	Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth. Small, 2021, 17,	5.2	58

e2101798.

4

Qing Zhao

#	Article	IF	CITATIONS
55	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie, 2021, 133, 23545-23552.	1.6	57
56	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie, 2018, 130, 1004-1008.	1.6	55
57	Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries. Nano Energy, 2017, 33, 205-212.	8.2	54
58	Interphases in Lithium–Sulfur Batteries: Toward Deployable Devices with Competitive Energy Density and Stability. ACS Energy Letters, 2018, 3, 2104-2113.	8.8	54
59	Oxocarbon Salts for Fast Rechargeable Batteries. Angewandte Chemie, 2016, 128, 12716-12720.	1.6	53
60	Flexible and Free-Standing Organic/Carbon Nanotubes Hybrid Films as Cathode for Rechargeable Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 14498-14506.	1.5	52
61	Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Research, 2017, 10, 4245-4255.	5.8	52
62	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 2018, 30, 5655-5662.	3.2	49
63	Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nature Communications, 2022, 13, 2283.	5.8	47
64	Rechargeable Roomâ€īemperature Na–CO ₂ Batteries. Angewandte Chemie, 2016, 128, 6592-6596.	1.6	43
65	Synthesis and Properties of Poly-Ether/Ethylene Carbonate Electrolytes with High Oxidative Stability. Chemistry of Materials, 2019, 31, 8466-8472.	3.2	43
66	Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: a review. Nanoscale, 2020, 12, 15923-15943.	2.8	42
67	MnOOH nanorods as high-performance anodes for sodium ion batteries. Chemical Communications, 2017, 53, 2435-2438.	2.2	40
68	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116214.	7.2	38
69	An Insoluble Benzoquinoneâ€Based Organic Cathode for Use in Rechargeable Lithiumâ€lon Batteries. Angewandte Chemie, 2017, 129, 12735-12739.	1.6	36
70	Atomic-Level Modulation-Induced Electron Redistribution in Co Coordination Polymers Elucidates the Oxygen Reduction Mechanism. ACS Catalysis, 2022, 12, 7531-7540.	5.5	36
71	In Situ Surface Selfâ€Reconstruction Strategies in Liâ€Rich Mnâ€Based Layered Cathodes for Energyâ€Dense Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	35
72	Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries. ACS Energy Letters, 2019, 4, 271-275.	8.8	32

QING ZHAO

#	Article	IF	CITATIONS
73	Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. CheM, 2022, 8, 1822-1854.	5.8	32
74	The enhanced hydrogen storage of micro-nanostructured hybrids of Mg(BH ₄) ₂ –carbon nanotubes. Nanoscale, 2015, 7, 18305-18311.	2.8	30
75	Structure and Evolution of Quasiâ€5olidâ€State Hybrid Electrolytes Formed Inside Electrochemical Cells. Advanced Materials, 2022, 34, .	11.1	30
76	A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a Highâ€Performance Rechargeable Lithiumâ€Ion Battery. Angewandte Chemie, 2016, 128, 6538-6542.	1.6	29
77	Regulating the growth of aluminum electrodeposits: towards anode-free Al batteries. Journal of Materials Chemistry A, 2020, 8, 23231-23238.	5.2	29
78	In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 28620-28626.	4.0	26
79	The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
80	Designing Polymeric Interphases for Stable Lithium Metal Deposition. Nano Letters, 2020, 20, 5749-5758.	4.5	23
81	Electrodeposition of Zinc in Aqueous Electrolytes Containing High Molecular Weight Polymers. Macromolecules, 2020, 53, 2694-2701.	2.2	23
82	Quinone Electrodes for Alkali–Acid Hybrid Batteries. Journal of the American Chemical Society, 2022, 144, 8066-8072.	6.6	23
83	Achieving Uniform Lithium Electrodeposition in Cross-Linked Poly(ethylene oxide) Networks: "Soft― Polymers Prevent Metal Dendrite Proliferation. Macromolecules, 2020, 53, 5445-5454.	2.2	22
84	Microscopic Origins of Caging and Equilibration of Self-Suspended Hairy Nanoparticles. Macromolecules, 2019, 52, 8187-8196.	2.2	15
85	An Alternative to Lithium Metal Anodes: Nonâ€dendritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie, 2018, 130, 15012-15016.	1.6	14
86	Edge Engineering of <scp>MoS₂</scp> Nanoribbons as High Performance Electrode Material for Naâ€ion Battery: A Firstâ€Principle Study. Chinese Journal of Chemistry, 2017, 35, 896-902.	2.6	13
87	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie, 2020, 132, 3072-3076.	1.6	13
88	Enhanced adsorption of carbonyl molecules on graphene via π-Li-π interaction: a first-principle study. Science China Materials, 2017, 60, 674-680.	3.5	12
89	Interphases of Polymer Electrolytes. Joule, 2019, 3, 1569-1571.	11.7	11
90	In-Built Polymer-in-Solvent and Solvent-in-Polymer Electrolytes for High-Voltage Lithium Metal Batteries. Cell Reports Physical Science, 2020, 1, 100146.	2.8	10

Qing Zhao

#	Article	IF	CITATIONS
91	Effects of Geometric Confinement on Caging and Dynamics of Polymer-Tethered Nanoparticle Suspensions. Macromolecules, 2021, 54, 426-439.	2.2	10
92	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie, 2022, 134, e202116214.	1.6	9
93	A reaction-dissolution strategy for designing solid electrolyte interphases with stable energetics for lithium metal anodes. Cell Reports Physical Science, 2022, 3, 100948.	2.8	8
94	Ultrafine RuO2 nanoparticles/MWCNTs cathodes for rechargeable Na-CO2 batteries with accelerated kinetics of Na2CO3 decomposition. Chinese Chemical Letters, 2023, 34, 107405.	4.8	4
95	High-resolution Electron Imaging and Spectroscopy of Reactive Materials and Liquid-Solid Interfaces in Energy Storage Devices. Microscopy and Microanalysis, 2019, 25, 2028-2029.	0.2	1
96	Titelbild: Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries (Angew. Chem. 4/2018). Angewandte Chemie, 2018, 130, 863-863.	1.6	0