Shufeng Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7480110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonaqueous amine-based absorbents for energy efficient CO2 capture. Applied Energy, 2019, 239, 725-734.	10.1	157
2	Kinetics of CO ₂ Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution. Environmental Science & Technology, 2016, 50, 2054-2063.	10.0	102
3	Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. Journal of Materials Chemistry A, 2013, 1, 1045-1047.	10.3	100
4	Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine. Chemical Engineering Journal, 2013, 222, 478-487.	12.7	95
5	CO2 absorption into aqueous potassium salts of lysine and proline: Density, viscosity and solubility of CO2. Fluid Phase Equilibria, 2015, 399, 40-49.	2.5	95
6	Post-combustion Capture of CO ₂ : Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent. Energy & Fuels, 2012, 26, 138-146.	5.1	83
7	Energy-efficient CO2 capture using potassium prolinate/ethanol solution as a phase-changing absorbent. International Journal of Greenhouse Gas Control, 2017, 56, 1-11.	4.6	70
8	Shell-Side Mass-Transfer Performance in Hollow-Fiber Membrane Contactors. Solvent Extraction and Ion Exchange, 2010, 28, 817-844.	2.0	61
9	Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater. Separation and Purification Technology, 2006, 49, 217-222.	7.9	54
10	Aqueous-phase synthesis of nitrogen-doped ordered mesoporous carbon nanospheres as an efficient adsorbent for acidic gases. Carbon, 2014, 80, 19-27.	10.3	51
11	Energy-Efficient CO ₂ Capture Using Nonaqueous Absorbents of Secondary Alkanolamines with a 2-Butoxyethanol Cosolvent. ACS Sustainable Chemistry and Engineering, 2020, 8, 18071-18082.	6.7	48
12	Low-Energy-Consumption CO ₂ Capture by Liquid–Solid Phase Change Absorption Using Water-Lean Blends of Amino Acid Salts and 2-Alkoxyethanols. ACS Sustainable Chemistry and Engineering, 2020, 8, 12956-12967.	6.7	45
13	Carbon Dioxide Absorption into Aqueous Potassium Salt Solutions of Arginine for Post-Combustion Capture. Energy & Fuels, 2016, 30, 6585-6596.	5.1	37
14	CO 2 absorption using aqueous potassium lysinate solutions: Vapor – liquid equilibrium data and modelling. Journal of Chemical Thermodynamics, 2017, 115, 209-220.	2.0	37
15	CO ₂ Capture by Water-Lean Amino Acid Salts: Absorption Performance and Mechanism. Energy & Fuels, 2018, 32, 6943-6954.	5.1	35
16	Effect of Arginine on Carbon Dioxide Capture by Potassium Carbonate Solution. Energy & Fuels, 2013, 27, 6010-6016.	5.1	31
17	Monoethanolamine+2-methoxyethanol mixtures for CO2 capture: Density, viscosity and CO2 solubility. Journal of Chemical Thermodynamics, 2019, 132, 155-163.	2.0	31
18	CO2 solubility in aqueous potassium lysinate solutions at absorber conditions. Journal of Chemical Thermodynamics, 2017, 111, 100-105.	2.0	30

SHUFENG SHEN

#	Article	IF	CITATIONS
19	Physicochemical Properties of Aqueous Potassium Salts of Basic Amino Acids as Absorbents for CO ₂ Capture. Journal of Chemical & Engineering Data, 2016, 61, 2391-2398.	1.9	28
20	A Comparative Study of Aqueous Potassium Lysinate and Aqueous Monoethanolamine for Postcombustion CO ₂ Capture. Energy & Fuels, 2017, 31, 14033-14044.	5.1	28
21	Performance Evaluation of Newly Developed Absorbents for Solvent-Based Carbon Dioxide Capture. Energy & Fuels, 2019, 33, 9032-9039.	5.1	23
22	Reaction kinetics of carbon dioxide absorption into aqueous potassium salt of histidine. Chemical Engineering Science, 2016, 146, 76-87.	3.8	22
23	CO2 absorption into a phase change absorbent: Water-lean potassium prolinate/ethanol solution. Chinese Journal of Chemical Engineering, 2018, 26, 2318-2326.	3.5	22
24	Effects of operational conditions on the removal of phenols from wastewater by a hollow-fiber membrane contactor. Separation and Purification Technology, 2012, 95, 80-88.	7.9	21
25	Density, Viscosity, and Excess Properties of Binary Mixtures of 2-(Methylamino)ethanol with 2-Methoxyethanol, 2-Ethoxyethanol, and 2-Butoxyethanol from 293.15 to 353.15 K. Journal of Chemical & Engineering Data, 2019, 64, 3960-3970.	1.9	21
26	Density, viscosity and excess properties of binary mixtures of monoethanolamine and 2-alkoxyethanols at temperatures from (293.15 to 353.15) K. Journal of Molecular Liquids, 2020, 299, 112191.	4.9	17
27	Characteristics of Potassium Prolinate + Water + Ethanol Solution as a Phase Changing Absorbent for CO ₂ Capture. Journal of Chemical & Engineering Data, 2017, 62, 3169-3177.	1.9	16
28	Process integration for production of 6-aminnopenicillanic acid from penicillin G fermentation broth. Process Biochemistry, 2006, 41, 571-574.	3.7	15
29	Reaction kinetics of carbon dioxide with potassium prolinate in water-lean solvents. Chemical Engineering Science, 2019, 199, 220-230.	3.8	15
30	Effects of emulsion properties on recovering butyl acetate from wastewater of penicillin plant by solvent sublation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 286, 8-16.	4.7	14
31	CO2 absorption by borate-promoted carbonate solution: Promotion mechanism and vapor liquid equilibrium. Fluid Phase Equilibria, 2014, 367, 38-44.	2.5	14
32	A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent. Journal of Hazardous Materials, 2014, 276, 192-199.	12.4	14
33	Measurements and correlations of solubility of N 2 O in and density, viscosity of partially CO 2 loaded water-lean amino acid salts. Journal of Chemical Thermodynamics, 2018, 126, 82-90.	2.0	14
34	Density, viscosity and excess properties for binary mixtures of 2-(ethylamino)ethanol and 2-(butylamino)ethanol with 2-butoxyethanol at temperatures from (293.15 to 353.15) K. Journal of Molecular Liquids, 2020, 312, 113351.	4.9	14
35	Kinetics of Carbon Dioxide Absorption into Water-Lean Potassium Prolinate/Ethylene Glycol Solutions. Industrial & Engineering Chemistry Research, 2019, 58, 9875-9882.	3.7	12
36	Aqueous Potassium Lysinate for CO2 Capture: Evaluating at Desorber Conditions. Energy & Fuels, 2019, 33, 10090-10098.	5.1	11

SHUFENG SHEN

#	Article	IF	CITATIONS
37	Solubility of N2O and CO2 in non-aqueous systems of monoethanolamine and glycol ethers: Measurements and model representation. Journal of Chemical Thermodynamics, 2019, 137, 76-85.	2.0	10
38	Simultaneous Determination of Glycyrrhizic Acid and Liquiritin in Glycyrrhiza uralensis Extract by HPLC with ELSD Detection. Journal of Liquid Chromatography and Related Technologies, 2006, 29, 2387-2397.	1.0	9
39	Solvent extraction separation of tyramine from simulated alkaloid processing wastewater by Cyanex 923/kerosene. Separation and Purification Technology, 2013, 103, 28-35.	7.9	9
40	Comparison of shell side mass transfer correlations in randomly packed hollow fiber membrane modules. Desalination and Water Treatment, 2010, 17, 52-56.	1.0	8
41	Densities, viscosities and spectroscopic study of partially CO2-loaded nonaqueous blends of 2-butoxyethanol with 2-(ethylamino)ethanol and 2-(butylamino)ethanol at temperatures of (293.15 to) Tj ETQq1	14097843	148rgBT /Ov
42	Impurity effects on the crystallization of avermectin B1a. Journal of Crystal Growth, 2006, 291, 448-454.	1.5	7
43	Application of block copolymer in three-liquid-phase extraction system. Tsinghua Science and Technology, 2006, 11, 248-251.	6.1	6
44	Effect of Plate Material on Dispersed-Phase Holdup in a Karr Reciprocating Plate Column. Solvent Extraction and Ion Exchange, 2011, 29, 800-822.	2.0	5
45	Mass transfer correlations for membrane gas-solvent contactors undergoing carbon dioxide desorption. Chinese Journal of Chemical Engineering, 2018, 26, 2337-2343.	3.5	5
46	Effects of low-melting temperature salt (Na2SO4) addition on the phase transformation, crystal growth, and chroma of titanium dioxide pigments. Powder Technology, 2015, 284, 204-209.	4.2	4
47	Water-lean blend mixtures of amino acid salts and 2-methoxyethanol for CO2 capture: Density, viscosity and solubility of CO2. Journal of Chemical Thermodynamics, 2020, 150, 106237.	2.0	4
48	Densities and viscosities for water-lean ternary mixtures of 2-butoxyethanol with monoethanolamine, 2-(methylamino)ethanol, 2-(ethylamino)ethanol or 2-(butylamino)ethanol from 293.15 to 353.15 K. Journal of Molecular Liquids, 2021, 323, 115079.	4.9	4
49	Densities, Viscosities, and Excess/Deviation Properties of the Ternary System 2-(Methylamino)ethanol + Dimethyl Sulfoxide + Water and the Binary Subsystems. Journal of Chemical & Engineering Data, 2021, 66, 3543-3556.	1.9	3
50	Solubility of N2O and CO2 in nonaqueous blends of 2-(methylamino)ethanol and 2-methoxyethanol. Journal of Molecular Liquids, 2021, 342, 117448.	4.9	2
51	Densities and viscosities of partially carbonated nonaqueous blends of 2-(methylamino)ethanol with 2-alkoxyethanols at temperatures of (293.15 to 353.15) K. Journal of Chemical Thermodynamics, 2022, 164, 106615.	2.0	2
52	Solubility of CO2 in nonaqueous system of 2-(butylamino)ethanol with 2-butoxyethanol: Experimental data and model representation. Chinese Journal of Chemical Engineering, 2022, 41, 441-448.	3.5	2