Carla L Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stick-Based Methods for Aptamer-Mediated siRNA Targeted Delivery. Methods in Molecular Biology, 2021, 2282, 31-42.	0.4	1
2	Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. Molecular Therapy - Nucleic Acids, 2021, 23, 982-994.	2.3	29
3	Selection of a Nuclease-Resistant RNA Aptamer Targeting CD19. Cancers, 2021, 13, 5220.	1.7	6
4	Advances in Oligonucleotide Aptamers for NSCLC Targeting. International Journal of Molecular Sciences, 2020, 21, 6075.	1.8	8
5	Emerging Therapeutic RNAs for the Targeting of Cancer Associated Fibroblasts. Cancers, 2020, 12, 1365.	1.7	8
6	Combined Targeting of Glioblastoma Stem-Like Cells by Neutralizing RNA-Bio-Drugs for STAT3. Cancers, 2020, 12, 1434.	1.7	9
7	Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. International Journal of Biological Sciences, 2020, 16, 1238-1251.	2.6	19
8	Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells. Molecular Therapy - Nucleic Acids, 2020, 20, 176-185.	2.3	29
9	Axl-Targeted Delivery of the Oncosuppressor miR-137 in Non-small-Cell Lung Cancer. Molecular Therapy - Nucleic Acids, 2019, 17, 256-263.	2.3	25
10	The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells. Molecular Therapy - Nucleic Acids, 2019, 18, 99-109.	2.3	33
11	An Anti-BCMA RNA Aptamer for miRNA Intracellular Delivery. Molecular Therapy - Nucleic Acids, 2019, 18, 981-990.	2.3	23
12	Nucleic acids delivering nucleic acids. Advanced Drug Delivery Reviews, 2018, 134, 79-93.	6.6	50
13	STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma. Molecular Therapy - Nucleic Acids, 2018, 10, 398-411.	2.3	72
14	Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes, 2018, 9, 529.	1.0	33
15	Aptamer-miR-34c Conjugate Affects Cell Proliferation of Non-Small-Cell Lung Cancer Cells. Molecular Therapy - Nucleic Acids, 2018, 13, 334-346.	2.3	43
16	Nucleic Acid Aptamers Targeting Epigenetic Regulators: An Innovative Therapeutic Option. Pharmaceuticals, 2018, 11, 79.	1.7	10
17	Abstract 169: Identification of RNA aptamers selectively recognizing and affecting glioblastoma stem cells. , 2018, , .		0
18	SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA. Faraday Discussions, 2017, 205, 271-289	1.6	39

CARLA L ESPOSITO

#	Article	IF	CITATIONS
19	Aptamer Cell-Based Selection: Overview and Advances. Biomedicines, 2017, 5, 49.	1.4	54
20	Aptamer-Mediated Targeted Delivery of Therapeutics: An Update. Pharmaceuticals, 2016, 9, 69.	1.7	98
21	Targeting Insulin Receptor with a Novel Internalizing Aptamer. Molecular Therapy - Nucleic Acids, 2016, 5, e365.	2.3	34
22	A combined microRNA-based targeted therapeutic approach to eradicate glioblastoma stem-like cells. Journal of Controlled Release, 2016, 238, 43-57.	4.8	69
23	Smooth Muscle Cell–targeted RNA Aptamer Inhibits Neointimal Formation. Molecular Therapy, 2016, 24, 779-787.	3.7	26
24	In vitro selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing. Methods, 2016, 97, 58-68.	1.9	35
25	Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL. Molecular Therapy - Nucleic Acids, 2016, 5, e289.	2.3	60
26	Identification of an Interfering Ligand Aptamer for EphB2/3 Receptors. Nucleic Acid Therapeutics, 2016, 26, 102-110.	2.0	14
27	Aptamer-MiRNA Conjugates for Cancer Cell-Targeted Delivery. Methods in Molecular Biology, 2016, 1364, 197-208.	0.4	17
28	Developing Aptamers by Cell-Based SELEX. Methods in Molecular Biology, 2016, 1380, 33-46.	0.4	18
29	61. Vascular Smooth Muscle Cell RNA Aptamers for the Treatment of Cardiovascular Disease. Molecular Therapy, 2015, 23, S27.	3.7	1
30	Selective delivery of therapeutic single strand antimiRs by aptamer-based conjugates. Journal of Controlled Release, 2015, 210, 147-159.	4.8	50
31	Aptamers are an innovative and promising tool for phytoplankton taxonomy and biodiversity research. Chemistry and Ecology, 2015, 31, 92-103.	0.6	5
32	A Trojan Horse for Human Immunodeficiency Virus. Chemistry and Biology, 2015, 22, 313-314.	6.2	3
33	Inhibition of Receptor Signaling and of Glioblastoma-derived Tumor Growth by a Novel PDGFRÎ ² Aptamer. Molecular Therapy, 2014, 22, 828-841.	3.7	118
34	Multifunctional Aptamer-miRNA Conjugates for Targeted Cancer Therapy. Molecular Therapy, 2014, 22, 1151-1163.	3.7	150
35	Abstract 4196: An RNA aptamer-based approach for human glioma treatment. , 2014, , .		0
36	Aptamer-mediated selective delivery of short RNA therapeutics in cancer cells. Journal of Rnai and Gene Silencing, 2014, 10, 500-6.	1.2	17

CARLA L ESPOSITO

#	Article	IF	CITATIONS
37	Electrochemical detection of miRNA-222 by use of a magnetic bead-based bioassay. Analytical and Bioanalytical Chemistry, 2013, 405, 1025-1034.	1.9	113
38	The isolectin <scp>IB</scp> 4 binds <scp>RET</scp> receptor tyrosine kinase in microglia. Journal of Neurochemistry, 2013, 126, 428-436.	2.1	43
39	Nucleic Acids in Human Glioma Treatment: Innovative Approaches and Recent Results. Journal of Signal Transduction, 2012, 2012, 1-11.	2.0	22
40	Targeting Axl With an High-affinity Inhibitory Aptamer. Molecular Therapy, 2012, 20, 2291-2303.	3.7	138
41	Abstract 1100: RNA aptamers as highly specific inhibitors of three human RTKs including Axl, EGFR and PDGFR. , 2012, , .		2
42	Abstract 883: Cell-based selection of RNA-aptamers to specifically target glioblastoma cancer stem cells. , 2012, , .		0
43	Recent Advance in Biosensors for microRNAs Detection in Cancer. Cancers, 2011, 3, 1877-1898.	1.7	88
44	Coupling Aptamers to Short Interfering RNAs as Therapeutics. Pharmaceuticals, 2011, 4, 1434-1449.	1.7	9
45	A Neutralizing RNA Aptamer against EGFR Causes Selective Apoptotic Cell Death. PLoS ONE, 2011, 6, e24071.	1.1	141
46	Abstract 626: Specific targeting of cancer cells with RNA aptamers. , 2011, , .		0
47	New insight into clinical development of nucleic acid aptamers. Discovery Medicine, 2011, 11, 487-96.	0.5	42
48	Differential SELEX in Human Glioma Cell Lines. PLoS ONE, 2009, 4, e7971.	1.1	59
49	GDNF Selectively Induces Microglial Activation and Neuronal Survival in CA1/CA3 Hippocampal Regions Exposed to NMDA Insult through Ret/ERK Signalling. PLoS ONE, 2009, 4, e6486.	1.1	48
50	Aptamers as Innovative Diagnostic and Therapeutic Agents in the Central Nervous System. CNS and Neurological Disorders - Drug Targets, 2009, 8, 393-401.	0.8	19
51	A Cross-Talk between TrkB and Ret Tyrosine Kinases Receptors Mediates Neuroblastoma Cells Differentiation. PLoS ONE, 2008, 3, e1643.	1.1	50