
Tamer Akar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479832/publications.pdf Version: 2024-02-01

Τλμέρ Δκλά

#	Article	IF	CITATIONS
1	Gel-entrapped biomass of Lactarius salmonicolor for the effective treatment of aquatic Co2+ and Mn2+ pollution. Biomass Conversion and Biorefinery, 2024, 14, 4257-4271.	2.9	0
2	Highly effective fish scale–based biochar as a recyclable and green material for toxic cadmium ion bioremoval from liquid phase. Biomass Conversion and Biorefinery, 2024, 14, 4869-4882.	2.9	0
3	Magnetically functionalized alunite as a recyclable and ecofriendly adsorbent for efficient removal of Water Process Engineering, 2022, 48, 102867.	2.6	3
4	Parametric optimization of Cu(II) removal process by a metakaolin-based geopolymer: Batch and continuous process design. Journal of Cleaner Production, 2022, 366, 132819.	4.6	8
5	Adsorption of Diazo Dye from Aqueous Solutions by Magnetic Montmorillonite Composite. Clean - Soil, Air, Water, 2021, 49, 2000165.	0.7	4
6	Microbial cells immobilized on natural biomatrix as a new potential ecofriendly biosorbent for the biotreatment of reactive dye contamination. Journal of Water Process Engineering, 2021, 39, 101731.	2.6	25
7	Immobilized Mucor plumbeus on sepiolite support: A potential decolorization agent suitable for batch and continuous mode water treatment. Journal of Cleaner Production, 2021, 294, 126283.	4.6	6
8	Attached culture of <i>Gibberella fujikuroi</i> for biocomposite sorbent production and ciprofloxacin sequestration applications. Journal of Chemical Technology and Biotechnology, 2021, 96, 2610-2619.	1.6	6
9	Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application. Journal of Environmental Management, 2021, 289, 112490.	3.8	21
10	Chitosan immobilization and Fe3O4 functionalization of olive pomace: An eco–friendly and recyclable Pb2+ biosorbent. Carbohydrate Polymers, 2021, 269, 118266.	5.1	19
11	Design and modeling of the decolorization characteristics of a regenerable and eco-friendly geopolymer: Batch and dynamic flow mode treatment aspects. Journal of Environmental Management, 2021, 298, 113548.	3.8	7
12	From green biowaste to water treatment applications: Utilization of modified new biochar for the efficient removal of ciprofloxacin. Sustainable Chemistry and Pharmacy, 2021, 24, 100522.	1.6	18
13	Phlebia gigantea cells immobilized on renewable biomass matrix as potential ecofriendly scavenger for lead contamination. Environmental Science and Pollution Research, 2020, 27, 16177-16188.	2.7	6
14	A passively immobilized novel biomagsorbent for the effective biosorptive treatment of dye contamination. Environmental Science and Pollution Research, 2019, 26, 25834-25843.	2.7	8
15	Biosorptive detoxification of zearalenone biotoxin by surfaceâ€modified renewable biomass: process dynamics and application. Journal of the Science of Food and Agriculture, 2019, 99, 1850-1861.	1.7	12
16	Conversion of natural mineral to effective geosorbent by coating MnO 2 and its application potential for dye contaminated wastewaters. Journal of Cleaner Production, 2018, 189, 887-897.	4.6	18
17	Biosorption of Basic Blue 7 by fungal cells immobilized on the green-type biomatrix of Phragmites australis spongy tissue. International Journal of Phytoremediation, 2018, 20, 145-152.	1.7	18
18	Process design and potential use of a regenerable biomagsorbent for effective decolorization process. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 554-565.	2.7	9

TAMER AKAR

#	Article	IF	CITATIONS
19	Anionically reinforced hydrogel network entrapped fungal cells for retention of cadmium in the contaminated aquatic media. Journal of Environmental Management, 2017, 204, 583-593.	3.8	9
20	The feasibility of Thamnidium elegans cells for color removal from real wastewater. Chemical Engineering Research and Design, 2017, 105, 316-325.	2.7	8
21	Biosorption potential of surface-modified waste sugar beet pulp for the removal of Reactive Yellow 2 (RY2) anionic dye. Turkish Journal of Chemistry, 2016, 40, 1044-1054.	0.5	4
22	Removal of Cadmium and Manganese by an Ecofriendly Biomass. Clean - Soil, Air, Water, 2016, 44, 202-210.	0.7	9
23	Surface-modified scarlet firethorn: an eco-friendly and effective dye remover with excellent regeneration potential. Desalination and Water Treatment, 2016, 57, 5546-5553.	1.0	3
24	Chitosan–alunite composite: An effective dye remover with high sorption, regeneration and application potential. Carbohydrate Polymers, 2016, 143, 318-326.	5.1	46
25	Treatment design and characteristics of a biosorptive decolourization process by a green type sorbent. Journal of Cleaner Production, 2016, 112, 4844-4853.	4.6	10
26	Effective biodecolorization potential of surface modified lignocellulosic industrial waste biomass. Chemical Engineering Journal, 2015, 259, 286-292.	6.6	22
27	Multivariate optimization of the decolorization process by surface modified biomaterial: Box–Behnken design and mechanism analysis. Environmental Science and Pollution Research, 2014, 21, 13055-13068.	2.7	19
28	Effective decolorization potential of Thamnidium elegans: Biosorption optimization, modelling, characterization and application studies. Chemical Engineering Journal, 2013, 221, 461-468.	6.6	18
29	On the utilization of a lignocellulosic waste as an excellent dye remover: Modification, characterization and mechanism analysis. Chemical Engineering Journal, 2013, 229, 257-266.	6.6	39
30	Characterization and application of plant-based magnetic biomaterial for batch and fixed-bed mode sequestration of lead from synthetic and real effluents. Ecological Engineering, 2013, 61, 251-257.	1.6	6
31	Removal of Pb2+ ions from contaminated solutions by microbial composite: Combined action of a soilborne fungus Mucor plumbeus and alunite matrix. Chemical Engineering Journal, 2013, 215-216, 626-634.	6.6	12
32	Utilization of Thamnidium elegans fungal culture in environmental cleanup: A reactive dye biosorption study. Ecological Engineering, 2013, 58, 363-370.	1.6	41
33	Improved biosorption potential of Thuja orientalis cone powder for the biosorptive removal of Basic Blue 9. Carbohydrate Polymers, 2013, 94, 400-408.	5.1	24
34	Chemical modification of a plant origin biomass using cationic surfactant ABDAC and the biosorptive decolorization of RR45 containing solutions. Colloids and Surfaces B: Biointerfaces, 2013, 101, 307-314.	2.5	20
35	Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic and mechanism analysis of the biosorption. Journal of Chemical Technology and Biotechnology, 2013, 88, 680-689.	1.6	36
36	Dithiocarbamated Symphoricarpus albus as a potential biosorbent for a reactive dye. Chemical Engineering Journal, 2012, 211-212, 442-452.	6.6	20

TAMER AKAR

#	Article	IF	CITATIONS
37	Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb2+ ions from aqueous media: Equilibrium, kinetic, thermodynamic and mechanism analysis. Chemical Engineering Journal, 2012, 185-186, 82-90.	6.6	52
38	Efficient biosorption of a reactive dye from contaminated media by <i>Neurospora sitophila</i> cells— <i>Zea mays</i> silk tissue biomass system. Journal of Chemical Technology and Biotechnology, 2011, 86, 1332-1341.	1.6	16
39	Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: Batch and continuous mode biosorption applications. Chemical Engineering Journal, 2011, 168, 125-133.	6.6	65
40	Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies. Bioresource Technology, 2010, 101, 7271-7277.	4.8	63
41	Biosorption performance of surface modified biomass obtained from Pyracantha coccinea for the decolorization of dye contaminated solutions. Chemical Engineering Journal, 2010, 160, 466-472.	6.6	52
42	Decolorization of a textile dye, reactive red 198 (rr198), by Aspergillus parasiticus fungal biosorbent. Brazilian Journal of Chemical Engineering, 2009, 26, 399-405.	0.7	40
43	Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, 2009, 97, 98-104.	1.8	94
44	Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials, 2009, 163, 1134-1141.	6.5	107
45	Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies. Journal of Hazardous Materials, 2009, 165, 126-133.	6.5	69
46	An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace. Journal of Hazardous Materials, 2009, 166, 1217-1225.	6.5	101
47	Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. Journal of Hazardous Materials, 2009, 171, 865-871.	6.5	55
48	Biosorption of Reactive Blue 49 dye under batch and continuous mode using a mixed biosorbent of macro-fungus Agaricus bisporus and Thuja orientalis cones. Chemical Engineering Journal, 2009, 148, 26-34.	6.6	88
49	Biosorption of lead(II) ions onto waste biomass of Phaseolus vulgaris L.: estimation of the equilibrium, kinetic and thermodynamic parameters. Desalination, 2009, 244, 188-198.	4.0	54
50	Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination, 2009, 249, 757-761.	4.0	135
51	Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries. Journal of Hazardous Materials, 2009, 168, 1302-1309.	6.5	67
52	Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis: Estimation of equilibrium, thermodynamic and kinetic parameters. Bioresource Technology, 2008, 99, 3057-3065.	4.8	127
53	Batch and Dynamic Flow Biosorption Potential of <i>Agaricus bisporus/Thuja orientalis</i> Biomass Mixture for Decolorization of RR45 Dye. Industrial & Engineering Chemistry Research, 2008, 47, 9715-9723.	1.8	15
54	Utilization of thePhaseolus vulgarisL. Waste biomass for decolorization of the textile dye Acid Red 57: determination of equilibrium, kinetic and thermodynamic parameters. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 591-600.	0.9	34

TAMER AKAR

#	Article	IF	CITATIONS
55	Adsorption Potential of Lead(II) Ions from Aqueous Solutions ontoCapsicum annuumSeeds. Separation Science and Technology, 2007, 42, 137-151.	1.3	26
56	Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis. Chemical Engineering Journal, 2007, 131, 293-300.	6.6	111
57	Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Applied Biochemistry and Biotechnology, 2007, 136, 389-405.	1.4	65
58	Cadmium exposure from the cement dust emissions: A field study in a rural residence. Chemosphere, 2006, 63, 1546-1552.	4.2	49
59	Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochemical Engineering Journal, 2006, 31, 197-203.	1.8	131
60	Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresource Technology, 2006, 97, 1780-1787.	4.8	195
61	Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Separation and Purification Technology, 2006, 47, 105-112.	3.9	238
62	Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). Journal of Hazardous Materials, 2006, 136, 317-323.	6.5	80
63	Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 2006, 115, 203-211.	6.6	315
64	Zn(II) biosorption properties of Botrytis cinerea biomass. Journal of Hazardous Materials, 2006, 131, 137-145.	6.5	101
65	Biosorption potential ofNeurospora crassa cells for decolorization of Acid Red 57 (AR57) dye. Journal of Chemical Technology and Biotechnology, 2006, 81, 1100-1106.	1.6	60
66	Biosorption Potential of the Macrofungus Ganoderma carnosum for Removal of Lead(II) Ions from Aqueous Solutions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 2587-2606.	0.9	18
67	Synthesis and Evaluation of Demethoxyviridin Derivatives as Potential Antimicrobials. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 686-692.	0.6	1
68	Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochemistry, 2005, 40, 3550-3558.	1.8	119
69	Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of. Journal of Hazardous Materials, 2005, 124, 200-208.	6.5	259
70	Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal, 2005, 25, 227-235.	1.8	126
71	Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Minerals Engineering, 2005, 18, 681-689.	1.8	130
72	Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd(II) and Cu(II) ions from aqueous solutions. Minerals Engineering, 2005, 18, 1099-1109.	1.8	139

Tamer Akar

#	Article	IF	CITATIONS
73	Biotransformation of racemic diisophorone by Cephalosporium aphidicola and Neurospora crassa. Biotechnology Letters, 2005, 27, 1007-1010.	1.1	10
74	Nickel and Cadmium Concentrations in Plasma and Na+/K+ATPase Activities in Erythrocyte Membranes of the People Exposed to Cement Dust Emissions. Environmental Monitoring and Assessment, 2005, 104, 437-444.	1.3	10
75	Nickel Exposure and its Effects. BioMetals, 2005, 18, 7-13.	1.8	20
76	Effects of chromium exposure from a cement factory. Environmental Research, 2003, 91, 113-118.	3.7	46