Yusen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–Support Synergistic Catalysis in Pt/MoO _{3–<i>x</i>} Nanorods toward Ammonia Borane Hydrolysis with Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2022, 14, 5275-5286.	8.0	44
2	Mechanism Investigations on Water Gas Shift Reaction over Cu(111), Cu(100), and Cu(211) Surfaces. ACS Omega, 2022, 7, 3514-3521.	3.5	12
3	Structural Design and Performance of Electrocatalysts for Carbon Dioxide Reduction: A Review. Acta Chimica Sinica, 2022, 80, 199.	1.4	3
4	Metal–support interaction induced ZnO overlayer in Cu@ZnO/Al ₂ O ₃ catalysts toward low-temperature water–gas shift reaction. RSC Advances, 2022, 12, 5509-5516.	3.6	2
5	Synergetic effect of CuO â^'Cu+ derived from layered double hydroxides toward catalytic transfer hydrogenation reaction. Applied Catalysis B: Environmental, 2022, 314, 121515.	20.2	51
6	Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 25288-25296.	8.0	9
7	Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13, .	12.8	68
8	Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural. Applied Catalysis B: Environmental, 2021, 282, 119569.	20.2	92
9	Synergistic effect between Ni single atoms and acid–base sites: Mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393, 1-10.	6.2	28
10	Addition of Sodium Additives for Improved Performance of Water-Gas Shift Reaction over Ni-Based Catalysts. ACS Omega, 2021, 6, 2346-2353.	3.5	6
11	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	11.2	46
12	MoO <i>_x</i> -Decorated Co-Based Catalysts toward the Hydrodeoxygenation Reaction of Biomass-Derived Platform Molecules. ACS Applied Materials & Interfaces, 2021, 13, 31799-31807.	8.0	26
13	Water-Gas-Shift Reaction on Au/TiO _{2–<i>x</i>} Catalysts with Various TiO ₂ Crystalline Phases: A Theoretical and Experimental Study. Journal of Physical Chemistry C, 2021, 125, 20360-20372.	3.1	11
14	Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Applied Catalysis B: Environmental, 2021, 295, 120290.	20.2	52
15	Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation. Applied Catalysis B: Environmental, 2021, 299, 120669.	20.2	83
16	Oxygen binding energy of doped metal: a shortcut to efficient Ni-based bimetallic catalysts for the hydrodeoxygenation reaction. Catalysis Science and Technology, 2021, 11, 4376-4386.	4.1	10
17	A recyclable CoGa intermetallic compound catalyst for the hydroformylation reaction. Journal of Catalysis, 2021, 404, 244-249.	6.2	11
18	The catalytic mechanism of the Au@TiO _{2â^'x} /ZnO catalyst towards a low-temperature water-gas shift reaction. Catalysis Science and Technology, 2020, 10, 768-775.	4.1	9

Yusen Yang

#	Article	IF	CITATIONS
19	Intermetallic compound catalysts: synthetic scheme, structure characterization and catalytic application. Journal of Materials Chemistry A, 2020, 8, 2207-2221.	10.3	63
20	Charge-separated metal-couple-site in NiZn alloy catalysts towards furfural hydrodeoxygenation reaction. Journal of Catalysis, 2020, 392, 69-79.	6.2	59
21	Catalytic Conversion Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol and 2-Methylfuran at Terrace, Step, and Corner Sites on Ni. ACS Catalysis, 2020, 10, 7240-7249.	11.2	31
22	Geometric effect promoted hydrotalcites catalysts towards aldol condensation reaction. Chinese Journal of Catalysis, 2020, 41, 1279-1287.	14.0	20
23	NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277, 119273.	20.2	57
24	Charge-Mediated Au+â^'Oxygen Vacancy towards Glycerol Oxidation with Largely Improved Catalytic Performance. Applied Catalysis A: General, 2020, 598, 117558.	4.3	13
25	Singleâ€Atomicâ€Co Electrocatalysts with Selfâ€Supported Architecture toward Oxygenâ€Involved Reaction. Advanced Functional Materials, 2019, 29, 1906477.	14.9	91
26	Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature. Science Bulletin, 2019, 64, 1764-1772.	9.0	27
27	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie, 2019, 131, 4002-4006.	2.0	13
28	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie - International Edition, 2019, 58, 3962-3966.	13.8	44
29	The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chemistry, 2019, 21, 5352-5362.	9.0	92
30	Zn-Zr-Al oxides derived from hydrotalcite precursors for ethanol conversion to diethyl carbonate. Chinese Journal of Catalysis, 2019, 40, 515-522.	14.0	9
31	A Control over Hydrogenation Selectivity of Furfural via Tuning Exposed Facet of Ni Catalysts. ACS Catalysis, 2019, 9, 4226-4235.	11.2	149
32	Au ^{δâ^'} –O _v –Ti ³⁺ Interfacial Site: Catalytic Active Center toward Low-Temperature Water Gas Shift Reaction. ACS Catalysis, 2019, 9, 2707-2717.	11.2	153
33	Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides. Acta Chimica Sinica, 2019, 77, 1129.	1.4	11
34	Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate. RSC Advances, 2018, 8, 4695-4702.	3.6	45
35	Selective Hydrogenation of Cinnamaldehyde over Co-Based Intermetallic Compounds Derived from Layered Double Hydroxides. ACS Catalysis, 2018, 8, 11749-11760.	11.2	106
36	A CaMnAl-hydrotalcite solid basic catalyst toward the aldol condensation reaction with a comparable level to liquid alkali catalysts. Green Chemistry, 2018, 20, 3071-3080.	9.0	35

#	Article	IF	CITATIONS
37	Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4, 12825-12832.	10.3	31