Yusen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479728/publications.pdf

Version: 2024-02-01

37 papers	1,612 citations	23 h-index	330143 37 g-index
37	37	37	1448
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Au ^{δa^'} â€"O _v â€"Ti ³⁺ Interfacial Site: Catalytic Active Center toward Low-Temperature Water Gas Shift Reaction. ACS Catalysis, 2019, 9, 2707-2717.	11.2	153
2	A Control over Hydrogenation Selectivity of Furfural via Tuning Exposed Facet of Ni Catalysts. ACS Catalysis, 2019, 9, 4226-4235.	11.2	149
3	Selective Hydrogenation of Cinnamaldehyde over Co-Based Intermetallic Compounds Derived from Layered Double Hydroxides. ACS Catalysis, 2018, 8, 11749-11760.	11.2	106
4	The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chemistry, 2019, 21, 5352-5362.	9.0	92
5	Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural. Applied Catalysis B: Environmental, 2021, 282, 119569.	20.2	92
6	Singleâ€Atomicâ€Co Electrocatalysts with Selfâ€Supported Architecture toward Oxygenâ€Involved Reaction. Advanced Functional Materials, 2019, 29, 1906477.	14.9	91
7	Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation. Applied Catalysis B: Environmental, 2021, 299, 120669.	20.2	83
8	Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13 , .	12.8	68
9	Intermetallic compound catalysts: synthetic scheme, structure characterization and catalytic application. Journal of Materials Chemistry A, 2020, 8, 2207-2221.	10.3	63
10	Charge-separated metal-couple-site in NiZn alloy catalysts towards furfural hydrodeoxygenation reaction. Journal of Catalysis, 2020, 392, 69-79.	6.2	59
11	NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277, 119273.	20.2	57
12	Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Applied Catalysis B: Environmental, 2021, 295, 120290.	20.2	52
13	Synergetic effect of Cu0 â^'Cu+ derived from layered double hydroxides toward catalytic transfer hydrogenation reaction. Applied Catalysis B: Environmental, 2022, 314, 121515.	20.2	51
14	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	11.2	46
15	Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate. RSC Advances, 2018, 8, 4695-4702.	3.6	45
16	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie - International Edition, 2019, 58, 3962-3966.	13.8	44
17	Metal–Support Synergistic Catalysis in Pt/MoO _{3–<i>x</i>} Nanorods toward Ammonia Borane Hydrolysis with Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2022, 14, 5275-5286.	8.0	44
18	A CaMnAl-hydrotalcite solid basic catalyst toward the aldol condensation reaction with a comparable level to liquid alkali catalysts. Green Chemistry, 2018, 20, 3071-3080.	9.0	35

#	Article	IF	CITATIONS
19	Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4, 12825-12832.	10.3	31
20	Catalytic Conversion Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol and 2-Methylfuran at Terrace, Step, and Corner Sites on Ni. ACS Catalysis, 2020, 10, 7240-7249.	11.2	31
21	Synergistic effect between Ni single atoms and acid–base sites: Mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393, 1-10.	6.2	28
22	Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature. Science Bulletin, 2019, 64, 1764-1772.	9.0	27
23	MoO <i>_x</i> -Decorated Co-Based Catalysts toward the Hydrodeoxygenation Reaction of Biomass-Derived Platform Molecules. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31799-31807.	8.0	26
24	Geometric effect promoted hydrotalcites catalysts towards aldol condensation reaction. Chinese Journal of Catalysis, 2020, 41, 1279-1287.	14.0	20
25	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie, 2019, 131, 4002-4006.	2.0	13
26	Charge-Mediated Au+â^'Oxygen Vacancy towards Glycerol Oxidation with Largely Improved Catalytic Performance. Applied Catalysis A: General, 2020, 598, 117558.	4.3	13
27	Mechanism Investigations on Water Gas Shift Reaction over $Cu(111)$, $Cu(100)$, and $Cu(211)$ Surfaces. ACS Omega, 2022, 7, 3514-3521.	3.5	12
28	Water-Gas-Shift Reaction on Au/TiO _{2â€"<i>x</i>} Catalysts with Various TiO ₂ Crystalline Phases: A Theoretical and Experimental Study. Journal of Physical Chemistry C, 2021, 125, 20360-20372.	3.1	11
29	Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides. Acta Chimica Sinica, 2019, 77, 1129.	1.4	11
30	A recyclable CoGa intermetallic compound catalyst for the hydroformylation reaction. Journal of Catalysis, 2021, 404, 244-249.	6.2	11
31	Oxygen binding energy of doped metal: a shortcut to efficient Ni-based bimetallic catalysts for the hydrodeoxygenation reaction. Catalysis Science and Technology, 2021, 11, 4376-4386.	4.1	10
32	Zn-Zr-Al oxides derived from hydrotalcite precursors for ethanol conversion to diethyl carbonate. Chinese Journal of Catalysis, 2019, 40, 515-522.	14.0	9
33	The catalytic mechanism of the Au@TiO _{2â^'x} /ZnO catalyst towards a low-temperature water-gas shift reaction. Catalysis Science and Technology, 2020, 10, 768-775.	4.1	9
34	Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. ACS Applied Materials & Semihydrogenation. ACS Applied Materials & Semihydrogenation.	8.0	9
35	Addition of Sodium Additives for Improved Performance of Water-Gas Shift Reaction over Ni-Based Catalysts. ACS Omega, 2021, 6, 2346-2353.	3.5	6
36	Structural Design and Performance of Electrocatalysts for Carbon Dioxide Reduction: A Review. Acta Chimica Sinica, 2022, 80, 199.	1.4	3

#	Article	IF	CITATIONS
37	Metal–support interaction induced ZnO overlayer in Cu@ZnO/Al ₂ O ₃ catalysts toward low-temperature water–gas shift reaction. RSC Advances, 2022, 12, 5509-5516.	3.6	2