
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479617/publications.pdf Version: 2024-02-01

LIAN-SHE HIL

#	Article	IF	CITATIONS
1	Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles. Polymer Bulletin, 2022, 79, 4685-4699.	1.7	4
2	Fast and effective uptake of mercury(II) from aqueous solution using waste carbon black-supported CuS composites and reutilization of spent adsorbent for photodegradation of rhodamine B. Journal of Molecular Liquids, 2022, 345, 118251.	2.3	9
3	Iron Catalyzed Cascade Construction of Molybdenum Carbide Heterointerfaces for Understanding Hydrogen Evolution. Small, 2022, 18, e2200439.	5.2	8
4	Photothermally responsive smart elastomer composites based on aliphatic polycarbonate backbone for biomedical applications. Composites Part B: Engineering, 2022, 240, 109985.	5.9	16
5	High-efficiency Hg(II) adsorbent: FeS loaded on a carbon black from pyrolysis of waste tires and sequential reutilization as a photocatalyst. Environmental Science and Pollution Research, 2022, 29, 84287-84299.	2.7	3
6	Novel magnetic covalent organic framework loaded ligand for rapid removal and selective detection of mercury(II) from water. Microporous and Mesoporous Materials, 2022, 341, 112099.	2.2	8
7	Stretchable elastomers with self-healing and shape memory properties based on functionalized TMC and DLLA copolymers. Journal of Molecular Liquids, 2022, 362, 119800.	2.3	0
8	The flexible segment adjusted gelation of the aliphatic polycarbonates: Preparation, mechanical properties, and self-healing behavior. Journal of Molecular Liquids, 2021, 321, 114704.	2.3	1
9	-Proline N-oxide dihydrazides as an efficient ligand for cross-coupling reactions of aryl iodides and bromides with amines and phenols. Tetrahedron, 2021, 79, 131826.	1.0	8
10	One-pot access to sulfonylated naphthalenediols/hydroquinones from naphthols/phenols with sodium sulfinates in an aqueous medium. New Journal of Chemistry, 2021, 45, 610-614.	1.4	3
11	New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst. Separation and Purification Technology, 2021, 259, 118112.	3.9	37
12	Sulfur crosslinked poly(m-aminothiophenol)/potato starch on mesoporous silica for efficient Hg(II) removal and reutilization of waste adsorbent as a catalyst. Journal of Molecular Liquids, 2021, 328, 115420.	2.3	29
13	Main-chain biodegradable liquid crystal materials base on diosgenin: synthesis and mesomorphism. Liquid Crystals, 2021, 48, 2035-2045.	0.9	1
14	The preparation of hydrogels with highly efficient self-healing and excellent mechanical properties. Journal of Molecular Liquids, 2021, 329, 115581.	2.3	8
15	Rapid and high selective removal of Hg(II) ions using tannic acid cross-linking cellulose/polyethyleneimine functionalized magnetic composite. International Journal of Biological Macromolecules, 2021, 182, 1120-1129.	3.6	21
16	Controllable Degradation of Poly (trimethylene carbonate) via Self-blending with Different Molecular Weights. Polymer Degradation and Stability, 2021, 189, 109596.	2.7	11
17	Immobilizing of palladium on melamine functionalized magnetic chitosan beads: A versatile catalyst for p-nitrophenol reduction and Suzuki reaction in aqueous medium. International Journal of Biological Macromolecules, 2021, 184, 358-368.	3.6	16
18	High removal rate and selectivity of Hg(II) ions using the magnetic composite adsorbent based on starch/polyethyleneimine. Journal of Molecular Liquids, 2021, 337, 116418.	2.3	18

JIAN-SHE HU

#	Article	IF	CITATIONS
19	pH-Responsive expandable polycarbonate–doxorubicin conjugate nanoparticles for fast intracellular drug release. New Journal of Chemistry, 2021, 45, 7261-7269.	1.4	2
20	Fluorinated chiral nematic liquid crystal dimers based on (S)-1-phenylethane-1,2-diol. Liquid Crystals, 2020, 47, 689-701.	0.9	8
21	Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds. Journal of Molecular Liquids, 2020, 319, 114134.	2.3	17
22	Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomaterialia, 2020, 118, 182-195.	4.1	24
23	Self-assembly and in vitro drug release behaviors of amphiphilic copolymers based on functionalized aliphatic liquid crystalline polycarbonate with pH/temperature dual response. Journal of Molecular Liquids, 2020, 316, 113837.	2.3	9
24	Highly efficient self-healing materials with excellent shape memory and unprecedented mechanical properties. Journal of Materials Chemistry A, 2020, 8, 16203-16211.	5.2	26
25	Constructing an efficient p–n heterojunction photocatalyst CaFe2O4/Fe2O3 nanocomposite for degradation of methyl orange. Journal of Materials Science: Materials in Electronics, 2020, 31, 17967-17979.	1.1	1
26	The effect of molecular weight on thermal properties and degradation behavior of copolymers based on TMC and DTC. Polymer Degradation and Stability, 2020, 175, 109128.	2.7	15
27	Magnetically recoverable 2â€(aminomethyl)phenolsâ€modified nanoparticles as a catalyst for Knoevenagel condensation and carrier for palladium to catalytic Suzuki coupling reactions. Applied Organometallic Chemistry, 2020, 34, e5907.	1.7	6
28	Preparation and Drug Release Behavior of Tussah Silk Fibroin Composite Membrane. Fibers and Polymers, 2020, 21, 252-261.	1.1	4
29	Mesomorphic properties of non-symmetric three-arm chenodeoxycholic acid-derived liquid crystals. Liquid Crystals, 2019, 46, 442-453.	0.9	15
30	A Predictable Catalyst Model for Highly Active and Selective Catalysis of Hydrogenation of Nitroarenes: Comprehension of Various Precious Metal Nanoparticles. ChemistrySelect, 2019, 4, 8960-8967.	0.7	9
31	Synthesis and Imaging of Biocompatible Graphdiyne Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 32798-32807.	4.0	49
32	Functionalized magnetic mesoporous silica/poly(m-aminothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent. Science of the Total Environment, 2019, 691, 664-674.	3.9	44
33	Synthesis and mesomorphism of the liquid crystal based on diosgenyl end-capped polycarbonate. Liquid Crystals, 2019, 46, 1535-1543.	0.9	5
34	The in vitro enzymatic degradation of poly(trimethylene carbonate-co-2, 2′-dimethyltrimethylene) Tj ETQq0 () 0 rgBT /0	verlock 10 Tf
	Rapid and selective removal of Hg(II) ions and high catalytic performance of the spent adsorbent based		

#	Article	lF	CITATIONS
37	New liquid crystal polycarbonate micelles for intracellular delivery of anticancer drugs. Colloids and Surfaces B: Biointerfaces, 2019, 178, 395-403.	2.5	9
38	Effect of a smectic liquid crystal polymer as new β-nucleating agent on crystallization structure, melting, and rheological behavior of isotactic polypropylene. Polymer Bulletin, 2019, 76, 2915-2929.	1.7	1
39	Photocatalytic degradation of acetochlor by α-Fe2O3 nanoparticles with different morphologies in aqueous solution system. Optik, 2019, 178, 36-44.	1.4	17
40	Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions. Water Science and Technology, 2018, 77, 1363-1371.	1.2	11
41	Synthesis and properties of new non-symmetric liquid crystal dimers containing mandelic acid and cyano group. Liquid Crystals, 2018, 45, 931-941.	0.9	7
42	Preparation of chitosan/MCM-41-PAA nanocomposites and the adsorption behaviour of Hg(II) ions. Royal Society Open Science, 2018, 5, 171927.	1.1	17
43	Synthesis and properties of (â^')-menthol-derived chiral liquid crystals by introducing adipoyloxy spacer between mesogenic core and chiral menthyl. Liquid Crystals, 2018, 45, 1525-1534.	0.9	6
44	Synthesis and liquid crystal behavior of new side chain aliphatic polycarbonates based on cholesterol. Journal of Molecular Liquids, 2018, 259, 350-358.	2.3	16
45	New chiral liquid crystal cyclic monomers based on diosgenin: synthesis and mesomorphism. Liquid Crystals, 2018, 45, 886-895.	0.9	9
46	Synthesis and liquid crystal properties of new cyclic carbonate monomers functionalised with cholesteryl moiety. Liquid Crystals, 2018, 45, 1834-1843.	0.9	12
47	pH responsive self-assembly and drug release behavior of aliphatic liquid crystal block polycarbonate with pendant cholesteryl groups. Journal of Molecular Liquids, 2018, 266, 405-412.	2.3	10
48	Straightforward Synthesis of Bifunctional Phosphorus Phenols via Phosphination of In Situ Generated o-Quinone Methides. Molecules, 2018, 23, 1240.	1.7	5
49	Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates. Nanomaterials, 2018, 8, 195.	1.9	11
50	The effect of various functional groups on mesophase behavior and optical property of blue phase liquid crystal compounds based on (â^)‑menthol. Journal of Molecular Liquids, 2018, 269, 755-765.	2.3	11
51	Non-symmetric chiral nematic liquid crystal dimers containing trifluoromethyl and 1,2-propanediol. Liquid Crystals, 2018, 45, 1734-1745.	0.9	10
52	New side chain cholesterol-functionalised aliphatic polycarbonate copolymer: synthesis and phase behaviour. Liquid Crystals, 2017, 44, 1356-1364.	0.9	9
53	New amphiphilic polycarbonates with side functionalized cholesteryl groups as biomesogenic units: synthesis, structure and liquid crystal behavior. RSC Advances, 2017, 7, 14176-14185.	1.7	13
54	The effect of terminal alkoxy chain on mesophase behaviour, optical property and structure of chiral liquid crystal compounds derived from (â^')-menthol. Liquid Crystals, 2017, 44, 2366-2378.	0.9	19

JIAN-SHE HU

#	Article	IF	CITATIONS
55	Main-chain biodegradable liquid crystal derived from cholesteryl derivative end-capped poly(trimethylene carbonate): synthesis and characterisation. Liquid Crystals, 2017, 44, 1050-1058.	0.9	10
56	Main-chain biodegradable liquid crystal based on diosgenyl end-capped poly(trimethylene carbonate). Molecular Crystals and Liquid Crystals, 2017, 652, 126-132.	0.4	3
57	Main-chain biodegradable liquid crystal based on cholesteryl end-capped polycarbonate copolymers. Liquid Crystals, 2017, 44, 925-932.	0.9	8
58	Synthesis and properties of new (â^')-menthol-derived chiral liquid crystal compounds with alkyl or alkoxy terminal groups. Liquid Crystals, 2017, 44, 526-537.	0.9	15
59	New chiral liquid crystal materials based on menthol: Synthesis and phase behavior. Molecular Crystals and Liquid Crystals, 2017, 658, 108-119.	0.4	3
60	Synthesis and Self-Assembled Behavior of pH-Responsive Chiral Liquid Crystal Amphiphilic Copolymers Based on Diosgenyl-Functionalized Aliphatic Polycarbonate. Nanomaterials, 2017, 7, 169.	1.9	18
61	The In Vitro Enzymatic Degradation of Cross-Linked Poly(trimethylene carbonate) Networks. Polymers, 2017, 9, 605.	2.0	17
62	Synthesis and properties of chiral azo-liquid crystalline terpolymer containing cyano mesogenic units. Liquid Crystals, 2017, 44, 2379-2390.	0.9	24
63	Synthesis and mesomorphism of new aliphatic polycarbonates containing side cholesteryl groups. Liquid Crystals, 2016, 43, 1486-1494.	0.9	10
64	1,2-Propanediol-linked chiral symmetric and non-symmetric liquid crystal dimers containing trifluoromethyl. Liquid Crystals, 2016, 43, 1846-1861.	0.9	15
65	Synthesis and characterization of new nematic liquid crystalline compounds-based thiophene units. Molecular Crystals and Liquid Crystals, 2016, 624, 91-102.	0.4	3
66	Synthesis and phase behaviour of new biodegradable liquid crystalline polycarbonate derived from side chain cholesteryl derivative. Liquid Crystals, 2016, 43, 91-101.	0.9	20
67	New side chain liquid crystal aliphatic polycarbonate with pendant functionalized diosgenyl groups: I. Synthesis and mesomorphism. Colloid and Polymer Science, 2015, 293, 3049-3059.	1.0	22
68	Study on the structure, melting, and nonisothermal crystallization behaviors of isotactic polypropylene with nematic liquid crystalline polymer as a new β-nucleating agent. Polymer Science - Series A, 2015, 57, 67-75.	0.4	2
69	Synthesis of a New Liquid Crystalline Polymer as a Highly Active Î ² -Nucleator and Its Effect on Melting and Crystallization Behaviors of Isotactic Polypropylene. International Journal of Polymer Analysis and Characterization, 2014, 19, 562-569.	0.9	2
70	Effect of a Nematic Liquid Crystalline Polymer as Highly Active β-Nucleator on Crystallization Structure and Morphology of Isotactic Polypropylene. International Journal of Polymer Analysis and Characterization, 2014, 19, 661-668.	0.9	2
71	Study on new chiral liquid crystalline monomers and polymers containing menthyl groups. Liquid Crystals, 2014, 41, 986-999.	0.9	11
72	New side chain ferroelectric liquid crystalline polymers based on (2 <i>S</i> ,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	0 67 Td (3 0.9	<i>S</i>)-2-c

1526-1536.

#	Article	IF	CITATIONS
73	New chiral liquid crystalline monomers, polymers, and elastomers derived from menthol derivatives: synthesis and mesomorphism. Journal of Materials Science, 2014, 49, 1229-1239.	1.7	16
74	A nematic liquid crystalline polymer as highly active novel β-nucleating agent for isotactic polypropylene. Journal of Materials Science, 2013, 48, 4032-4040.	1.7	20
75	Influence of two liquid crystalline polysiloxanes with different average molecular weight as new β-nucleator on crystallization structure of isotactic polypropylene. Polymer Bulletin, 2013, 70, 2519-2530.	1.7	9
76	Study on side-chain liquid–crystalline copolymer as a new β-nucleating agent to induce phase behavior of isotactic polypropylene. Colloid and Polymer Science, 2013, 291, 735-742.	1.0	11
77	New chiral liquid crystal monomers and cholesteric polyacrylates: synthesis and characterisation. Liquid Crystals, 2013, 40, 1095-1104.	0.9	14
78	Synthesis and phase behaviour of chiral liquid crystalline monomers based on menthyl groups, smectic polymers and cholesteric elastomers. Liquid Crystals, 2012, 39, 121-131.	0.9	23
79	Synthesis and phase behavior of chiral liquid crystalline polymeric networks derived from menthol. High Performance Polymers, 2012, 24, 673-682.	0.8	10
80	Synthesis, structure, and properties of chiral liquid crystal monomers and polymers based on menthol. Journal of Polymer Science Part A, 2012, 50, 5049-5059.	2.5	21
81	Liquid crystalline properties of cholesteric elastomers based on a mesogenic monomer containing menthyl groups. Polymer International, 2012, 61, 1186-1192.	1.6	1
82	Cholesteric monomer and elastomers containing menthyl groups: Synthesis and phase behavior. Journal of Applied Polymer Science, 2012, 125, 3849-3855.	1.3	1
83	Influence of different nematic crosslinking unit on mesomorphism of side-chain cholesteric elastomers containing menthyl groups. Colloid and Polymer Science, 2010, 288, 851-858.	1.0	7
84	Synthesis, structure and mesomorphism of new cholesteric monomers and smectic comblike polymers. European Polymer Journal, 2010, 46, 535-545.	2.6	14
85	The effect of mesogenic and non-mesogenic crosslinking units on the phase behaviour of side-chain smectic and cholesteric elastomers. Liquid Crystals, 2010, 37, 1385-1392.	0.9	9
86	Synthesis and phase behaviour of new cholesteric monomers and side chain smectic polymers based on cholesterol. Liquid Crystals, 2010, 37, 1259-1268.	0.9	8
87	EFFECT OF NEMATIC LIQUID CRYSTALLINE COPOLYMER AS A <i>β</i> -FORM NUCLEATOR ON CRYSTALLIZATION STRUCTURE AND THERMAL PROPERTIES OF ISOTACTIC POLYPROPYLENE. Acta Polymerica Sinica, 2010, 010, 1100-1107.	0.0	7
88	Synthesis, structure, and phase behavior of new chiral liquidâ€crystalline polysiloxanes based on mesogenic menthyl monomers. Journal of Applied Polymer Science, 2009, 111, 3016-3025.	1.3	3
89	Synthesis and characterization of new cholesteric monomers and smectic polymers containing menthyl groups. Colloid and Polymer Science, 2009, 287, 215-224.	1.0	7
90	Synthesis and properties of new chiral mesogenic monomers and side-chain smectic homopolymers containing (â~)-menthyl groups. European Polymer Journal, 2009, 45, 3292-3301.	2.6	9

JIAN-SHE HU

#	Article	IF	CITATIONS
91	Synthesis and mesomorphic properties of cholesteric elastomers based on chiral mesogenic crosslinking agent. Journal of Applied Polymer Science, 2008, 107, 1343-1349.	1.3	2
92	Sideâ€chain copolymers containing smectic monomer and chiral reagent—Synthesis and characterization. Journal of Applied Polymer Science, 2008, 108, 1265-1272.	1.3	4
93	Synthesis and phase behavior of new cholesteric liquidâ€crystalline copolymers containing chiral mesogenic groups derived from menthol derivatives. Journal of Applied Polymer Science, 2008, 109, 2187-2194.	1.3	14
94	Synthesis, structure and mesomorphic properties of side-chain chiral liquid crystalline polysiloxanes based on (S)-(+)-2-methyl-1-butanol derivatives. European Polymer Journal, 2007, 43, 2017-2027.	2.6	25
95	Synthesis and characterization of side-chain cholesteric elastomers derived from an isosorbide crosslinking agent. Colloid and Polymer Science, 2007, 285, 1683-1690.	1.0	9
96	Side-chain cholesteric liquid crystalline elastomers derived from a mesogenic crosslinking agent: I. Synthesis and mesomorphic properties. European Polymer Journal, 2006, 42, 2849-2858.	2.6	23
97	Synthesis and characterization of side-chain cholesteric liquid-crystalline polymers derived from steroid substituents. Journal of Applied Polymer Science, 2006, 99, 2330-2336.	1.3	9
98	Synthesis and mesomorphic properties of a new side-chain, chiral smectic, liquid-crystalline elastomer. Journal of Applied Polymer Science, 2006, 100, 4234-4239.	1.3	10
99	Synthesis and mesomorphic properties of side-chain cholesteric liquid-crystalline polymers containing menthyl groups. Journal of Applied Polymer Science, 2006, 102, 5559-5565.	1.3	15
100	New thermochromic liquid-crystalline polymer: Synthesis and phase behavior. Journal of Applied Polymer Science, 2005, 98, 329-335.	1.3	4
101	Mesomorphic properties of side-chain cholesteric liquid-crystalline elastomers. Colloid and Polymer Science, 2005, 283, 1349-1355.	1.0	6
102	Preparation and phase behavior of side-chain cholesteric liquid-crystalline elastomers. Journal of Polymer Science Part A, 2005, 43, 3315-3323.	2.5	11
103	Synthesis, structure, and characterization of nematic liquid-crystalline thermosets based on bisacrylates. Journal of Polymer Science Part A, 2005, 43, 4478-4485.	2.5	3
104	Synthesis and phase behavior of side-chain liquid-crystalline polymers containing malachite green lactone groups. Journal of Polymer Science Part A, 2004, 42, 3870-3878.	2.5	6
105	Side-chain cholesteric liquid-crystalline elastomers derived from smectic crosslinking units: Synthesis and phase behavior. Journal of Polymer Science Part A, 2004, 42, 5262-5270.	2.5	25
106	New side-chain liquid-crystalline ionomers. I. Synthesis and characterization of a homopolymer derived from ionic mesogenic groups. Journal of Applied Polymer Science, 2004, 93, 2511-2516.	1.3	8
107	Synthesis and properties of polysiloxane side chain cholesteric elastomers. Liquid Crystals, 2004, 31, 387-392.	0.9	7
108	Synthesis, structure and characterization of side chain cholesteric liquid crystalline polysiloxanes. Liquid Crystals, 2004, 31, 1357-1365.	0.9	27

#	Article	IF	CITATIONS
109	Cholesteric liquid crystalline thermosets: synthesis, structure and properties of ChLCTs/precursor polymers. Liquid Crystals, 2004, 31, 393-400.	0.9	6
110	Synthesis and Characterization of Side-Chain Cholesteric Liquid Crystalline Polysiloxanes Containing Diosgeninyl Groups. Polymer Journal, 2004, 36, 920-926.	1.3	2
111	Side-chain Cholesteric Liquid Crystalline Elastomers Derived from Nematic Bis-olefinic Crosslinking Units. Macromolecular Chemistry and Physics, 2003, 204, 2123-2129.	1.1	46
112	Synthesis and properties of side chain cholesteric liquid-crystalline polyacrylates containing two mesogenic groups. Journal of Applied Polymer Science, 2003, 88, 1936-1941.	1.3	7
113	Synthesis, structures, and properties of side-chain cholesteric liquid-crystalline polysiloxanes. Journal of Applied Polymer Science, 2003, 89, 3944-3950.	1.3	22
114	Synthesis and characterization of side-chain liquid-crystalline ionomers containing quaternary ammonium salt groups. Journal of Applied Polymer Science, 2003, 90, 2879-2886.	1.3	7
115	Side-Chain Cholesteric Liquid Crystalline Elastomers Derived from a Mesogenic Cross-Linking Agent. Macromolecules, 2003, 36, 9060-9066.	2.2	54
116	Side chain cholesteric liquid crystalline elastomers: synthesis and phase behaviour. Liquid Crystals, 2003, 30, 1267-1275.	0.9	41
117	Liquid-Crystalline Elastomers Containing Sulfonic Acid Groups. Macromolecules, 2003, 36, 3320-3326.	2.2	24
118	Structures and Properties of Side-Chain Cholesteric Liquid Crystalline Polyacrylates. Polymer Journal, 2003, 35, 160-166.	1.3	21
119	Synthesis and phase behavior of chiral side-chain liquid-crystalline polysiloxanes containing two mesogenic groups. Journal of Applied Polymer Science, 2002, 86, 2670-2676.	1.3	15
120	Synthesis and characterization of chiral smectic side-chain liquid crystalline polysiloxanes and ionomers containing sulfonic acid groups. Journal of Applied Polymer Science, 2001, 80, 2335-2340.	1.3	40
121	Rhodium nanoparticles supported on 2-(aminomethyl)phenols-modified Fe3O4 spheres as a magnetically recoverable catalyst for reduction of nitroarenes and the degradation of dyes in water. Catalysis Letters, 0, , 1.	1.4	3