
Jakrapong Kaewkhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical and gamma radiation shielding properties of natural rubber composites: effects of bismuth oxide (Bi ₂ O ₃) and lead oxide (PbO). Materials Research Innovations, 2022, 26, 8-15.	1.0	7
2	The influence of Gd2O3 on shielding, thermal and luminescence properties of WO3–Gd2O3–B2O3 glass for radiation shielding and detection material. Radiation Physics and Chemistry, 2022, 190, 109805.	1.4	17
3	X-ray radiation shielding of CeO2 doped borosilicate glasses and their luminescence characteristics. Radiation Physics and Chemistry, 2022, 191, 109825.	1.4	13
4	The radioluminescence investigation of lead sodium borate doped with Sm3+ glass scintillator. Radiation Physics and Chemistry, 2022, 192, 109887.	1.4	11
5	High density of tungsten gadolinium borate glasses for radiation shielding material: Effect of WO3 concentration. Radiation Physics and Chemistry, 2022, 192, 109926.	1.4	39
6	Development of bright orange-reddish color emitting material from Sm3+-doped Y2O3 based borosilicate glasses for solid state lighting materials. Journal of Non-Crystalline Solids, 2022, 578, 121283.	1.5	16
7	Photoluminescence analysis of Er3+-ions Doped P2O5-Gd2O3/GdF3-BaO-ZnO glass systems. Journal of Alloys and Compounds, 2022, 902, 163766.	2.8	13
8	Dy ³⁺ -Doped Li ₂ O: BaO: Gd ₂ O ₃ : SiO ₂ Glasses for Luminescence Applications. Integrated Ferroelectrics, 2022, 224, 71-83.	0.3	3
9	Radiation and Fast Neutron Shielding Properties of Nickel-Based Superalloys: Inconel 600, 718 and 725 Superalloys. Integrated Ferroelectrics, 2022, 224, 120-133.	0.3	2
10	Proton, Alpha, and Gamma Rays Interactions of CsI(Na) Scintillator Using the Theoretically Computational Program. Integrated Ferroelectrics, 2022, 224, 163-171.	0.3	2
11	White Light Emission of Dy ³⁺ Doped Oxy-Fluoride Phosphate Glass System for Active Laser Medium. Integrated Ferroelectrics, 2022, 224, 1-12.	0.3	10
12	The Effect of Calcium Fluoride in Lithium Phosphate Oxide (LPO) Doped with Sm ³⁺ Content. Integrated Ferroelectrics, 2022, 224, 110-119.	0.3	4
13	Structural and Luminescence Characterizations of Tb ³⁺ Ion Doped Boro-Tellurite Glasses for LED Applications. Integrated Ferroelectrics, 2022, 224, 62-70.	0.3	1
14	Effect of Gd ³⁺ -Sm ³⁺ Energy Transfer on the Luminescence Properties of Ba-Na-B Glasses. Integrated Ferroelectrics, 2022, 224, 33-40.	0.3	0
15	Spectroscopic Characterization and CIE Coordinate of Pr ³⁺ Ions Doped Pottasium Aluminum Gadolinium Phosphate Glasses. Integrated Ferroelectrics, 2022, 224, 52-61.	0.3	1
16	The Impact on Addition of WO ₃ for Radiation Shielding Properties of TeO ₂ –BaO Glass System. Integrated Ferroelectrics, 2022, 224, 134-144.	0.3	1
17	Neodymium-Doped Multi-Component Borate/Phosphate Glasses for NIR Solid-State Material Applications. Integrated Ferroelectrics, 2022, 224, 13-32.	0.3	2
18	The Radioluminescence Investigation of Lead Sodium Borate Glass Doped with Eu ³⁺ . Integrated Ferroelectrics, 2022, 224, 90-99.	0.3	2

#	Article	IF	CITATIONS
19	The Effect of Sodium Fluoride in Lithium Fluorophosphate (LFP) Glasses Doped with Nd ₂ O ₃ Ion. Integrated Ferroelectrics, 2022, 224, 100-109.	0.3	8
20	Energy transfer and broad-band luminescence of Nd3+-Er3+ co-doped Lithium Fluorophosphate (LFP) glasses. Optical Materials, 2022, 125, 112007.	1.7	15
21	Effect of CuO on Electrical Property, Seebeck Coefficient and Power Factor of CuGd ₂ O ₄ . Integrated Ferroelectrics, 2022, 224, 84-89.	0.3	0
22	Judd-Ofelt and McCumber Studies of Er ³⁺ Ions Doped in Lanthanum Borate Glass for Visible and NIR Lighting Application. Integrated Ferroelectrics, 2022, 224, 41-51.	0.3	0
23	The Study on Eu ³⁺ Doped Lithium Bismuth Aluminum Borate Glass: New Red Luminescence Medium. Integrated Ferroelectrics, 2022, 224, 145-152.	0.3	2
24	Spectroscopic investigation of dysprosium doped bismuth-borate glasses for white light application. Optical Materials, 2022, 127, 112291.	1.7	12
25	Spectroscopic and photoluminescence properties of praseodymium doped potassium aluminum phosphate (P2O5-K2O-Al2O3) glasses for optoelectronics applications Journal of Non-Crystalline Solids, 2022, 586, 121570.	1.5	3
26	Effect of Soaking Time and Sb ₂ O ₃ Concentration on Number of Bubble and Optical Properties of Borosilicate Glasses. Integrated Ferroelectrics, 2022, 223, 10-17.	0.3	3
27	White Emission from Li ₂ O-BaO-Bi ₂ O ₃ -P ₂ O ₅ Glass Doped with Dy ³⁺ for Optical Condensed Material Applications. Integrated Ferroelectrics, 2022, 223, 18-28.	0.3	1
28	Physical, Optical and Luminescence Properties of Pr ³⁺ Doped in Lanthanum Borate Glasses. Integrated Ferroelectrics, 2022, 222, 253-261.	0.3	2
29	Spectroscopic Properties of Er ³⁺ Doped Li ₂ O-Al ₂ O ₃ -BaO-P ₂ O ₅ and Na ₂ O-Al ₂ O ₃ -BaO-P ₂ O ₅ Glasses for Fiber Optic Communication Material. Integrated Ferroelectrics, 2022, 222, 262-272.	0.3	Ο
30	Luminescence Study of Sm ³⁺ -Doped Ba-Na-B Oxide and Oxyfluoride Glasses for Orange LED. Integrated Ferroelectrics, 2022, 222, 244-252.	0.3	0
31	Effects of WO ₃ on Radiation Shielding Properties of WO ₃ –TeO ₂ Binary Tellurite Glass System. Integrated Ferroelectrics, 2022, 222, 125-135.	0.3	9
32	Ultra-Wideband Dielectric and Impedance Spectroscopy of B ₂ O ₃ –Bi ₂ O ₃ –SiO ₂ 2C Glasses. Integrated Ferroelectrics, 2022, 223, 38-45.)< soula> 3 < /	su b >
33	Direct and Quantitative Study of Gd ³⁺ Doped on Na ₂ O: Al ₂ O ₃ : SiO ₂ : B ₂ O ₃ :CeF ₃ Glass Samples for Radiation Interaction Parameters. Integrated Ferroelectrics, 2022, 223, 29-37.	0.3	0
34	Spectroscopic Study of Eu ³⁺ Doped in Bismuth Barium Borate Glasses for Reddish Orange Emission Photonic Applications. Integrated Ferroelectrics, 2022, 222, 234-243.	0.3	0
35	Development of Reddish-Orange Color Emission Material from Barium Gadolinium Borate Glasses Doped with Eu ₂ 0 ₃ . Integrated Ferroelectrics, 2022, 222, 273-282.	0.3	0
36	Effect of the Atmosphere on Physical Optical and Luminescence Properties of Li ₂ O:Y ₂ O ₃ :B ₂ O ₃ :CeF ₃ Glasses. Integrated Ferroelectrics, 2022, 223, 1-9.	0.3	0

#	Article	IF	CITATIONS
37	Investigation Bi-Slag Glass Systems for Radiation Shielding. Integrated Ferroelectrics, 2022, 222, 170-179.	0.3	1
38	Behaviors of TeO2-B2O3-WO3 glass system for ionizing radiation shielding performance: photon, protons and alpha particles. Materials Today: Proceedings, 2022, 65, 2269-2276.	0.9	2
39	Mn2+ Doping Inside Glass Substrate Utilizing Metal Ion Beam Implantation Technique. Optik, 2022, , 169270.	1.4	0
40	Photoluminescence and energy transfer investigations in Gd3+-Dy3+co-doped borate glasses. Physica B: Condensed Matter, 2022, 639, 413976.	1.3	5
41	The Development of Er ³⁺ / Yb ³⁺ Co-Doped Li ₂ O-Bi ₂ O ₃ -Al ₂ O ₃ -B ₂ O _{3Glass for Laser and Fiber Optics Applications. Integrated Ferroelectrics, 2022, 225, 20-33.}	u b 0.3	1
42	Fabrication and investigation of the effects of various gadolinium compounds on Ce3+-activated phosphate glasses for scintillation applications. Optik, 2022, 262, 169303.	1.4	1
43	Eu-Doped Gd ₂ MoB ₂ O ₉ Phosphors for Latent Fingerprints Detection. Integrated Ferroelectrics, 2022, 225, 160-172.	0.3	1
44	Investigation of Eu ³⁺ Doped Oxy-Fluoride Phosphate Glass for Red Laser Gain Medium Application. Integrated Ferroelectrics, 2022, 225, 80-92.	0.3	5
45	White Emission from Dy ³⁺ Doped in ZnO – CaO – B ₂ O ₃ for WLEDs Material Application. Integrated Ferroelectrics, 2022, 225, 173-185.	0.3	3
46	Charged Particles and Gamma-Ray Interaction with Gallium Barium Borate Glass: Theoretical Approach. Integrated Ferroelectrics, 2022, 225, 139-157.	0.3	1
47	Fabrication and Characterization of Eu ³⁺ Doped Tellurite Glasses for Laser Materials. Integrated Ferroelectrics, 2022, 225, 199-211.	0.3	1
48	Pr ³⁺ -Doped Ba-Na-B Glasses: Luminescence and Judd–Ofelt Analysis for Photonic Applications. Integrated Ferroelectrics, 2022, 225, 34-41.	0.3	0
49	Photoluminescence and optical transition properties of Sm3+ activated lead-borate glasses. Optical Materials, 2022, 129, 112486.	1.7	15
50	Synthesis and elemental analysis of gadolinium halides (GdX3) in glass matrix for radiation detection applications. Optical Materials, 2022, 129, 112490.	1.7	3
51	Investigation of europium-doped aluminium phosphate glass for red light generation. Ceramics International, 2022, 48, 24751-24757.	2.3	14
52	Spectroscopic investigation of Sm2O3-activated barium calcium strontium borate glasses for laser and display-devices applications. Optik, 2022, 265, 169439.	1.4	4
53	Optical properties of Sm3+ doped in CaO-Al2O3-Na2O-BaO-B2O3 glasses for under-sea optical device applications. Optik, 2022, 262, 169366.	1.4	9
54	Optical and structural properties of Eu3+ doped MgO–Li2O–Na2O–BaO–B2O3 glasses for scintillating glass applications. Radiation Physics and Chemistry, 2022, 199, 110295.	1.4	10

#	Article	IF	CITATIONS
55	Crystal growth and luminescence characterization of LaCl3:Dy3+ single crystal for the laser application. Optik, 2022, , 169530.	1.4	0
56	Glass production from rice husk ash as an imitation gemstone products. Materials Today: Proceedings, 2022, , .	0.9	0
57	Luminescence, spectroscopic properties and reddish-orange emission from Eu3+ ion doped tellurite and fluorotellurite glasses: A comparative study. Optik, 2022, 265, 169531.	1.4	4
58	White emission from Dy3+ doped Gd2O3-B2O3 glass for WLEDs encapsulation. Optik, 2022, 265, 169532.	1.4	5
59	Spectral characteristics and energy transfer in Gd3+and Nd3+doped borate glasses for NIR laser applications. Infrared Physics and Technology, 2022, 125, 104272.	1.3	3
60	Crystal growth and scintillation properties of Tm3+ doped LaCl3 single crystal for radiation detection. Radiation Physics and Chemistry, 2022, 200, 110347.	1.4	1
61	The study on BWGd:Nd glass for new laser amplifier: Properties, theoretical and practical investigations. Optical Materials, 2022, 129, 112535.	1.7	7
62	Investigation of color tunability of Dy3+& Eu3+ Co-doped bismuth borate glasses for lighting applications. Materials Chemistry and Physics, 2022, 288, 126422.	2.0	5
63	Luminescence and Judd-Ofelt analysis of gallium aluminum gadolinium yttrium borate scintillating glass doped with Dy3+. Radiation Physics and Chemistry, 2022, 199, 110284.	1.4	8
64	Scintillation performance of the Ce3+ -activated lithium phosphate glass. Radiation Physics and Chemistry, 2022, 199, 110285.	1.4	7
65	The influence of CeF3 on radiation hardness and luminescence properties of Gd2O3–B2O3 glass scintillator. Scientific Reports, 2022, 12, .	1.6	8
66	Mathematical calculation of gamma rays interaction in bismuth gadolinium silicate glass using WinXCom program. Materials Today: Proceedings, 2022, 65, 2412-2415.	0.9	22
67	Physical and luminescence properties of zinc barium gadolinium borate glass doped with dysprosium oxide for white light emission. Materials Today: Proceedings, 2022, 65, 2446-2451.	0.9	2
68	Development of flexible radiation shielding materials from natural Rubber/Sb2O3 composites. Radiation Physics and Chemistry, 2022, 200, 110379.	1.4	17
69	Tuneable luminescence of Pr3+-doped sodium aluminium gadolinium phosphate glasses for photonics applications. Optik, 2022, 267, 169668.	1.4	4
70	Solid-state synthesis, characterizations and luminescent properties of EuBO3 phosphors with various Gd3+ concentrations for X-ray screen material application. Radiation Physics and Chemistry, 2022, 201, 110406.	1.4	2
71	Physical and photoluminescence investigations of Eu3+ doped gadolinium borate scintillating glass. Radiation Physics and Chemistry, 2022, 200, 110386.	1.4	7
72	A critical review and future prospects of Dy3+-doped glasses for white light emission applications. Optik, 2022, 266, 169583.	1.4	16

#	Article	IF	CITATIONS
73	Er3+-doped barium sodium borate glasses development for 1.54µm broadband amplifier and optical laser. Optik, 2022, 266, 169557.	1.4	5
74	Luminescence and energy transfer properties of Gd3+ and Dy3+ in borosilicate glasses for tunable emission materials. Optik, 2022, 266, 169584.	1.4	2
75	Effect of Gd2O3 in Li2O–AlF3–CaF2–P2O5–Eu2O3 glasses for laser medium and X-rays detection material applications. Radiation Physics and Chemistry, 2022, 199, 110362.	1.4	7
76	Eu3+ ions doped lithium aluminium gadolinium borophosphate glasses: Energy transfer, optical and luminescence behaviors for red emission material. Radiation Physics and Chemistry, 2022, 199, 110390.	1.4	5
77	Scintillation and photoluminescence investigations of Gd2MoB2O9: CeF3 phosphors. Radiation Physics and Chemistry, 2022, 199, 110368.	1.4	Ο
78	X-ray induced optical luminescence and energy transfer mechanism from Gd 3+ to Tb3+ ions in fluorophosphate scintillating glasses for X-ray detecting material. Radiation Physics and Chemistry, 2022, 199, 110360.	1.4	0
79	Effect of Gd2O3 on radiation shielding, physical and optical properties of sodium borosilicate glass system. Radiation Physics and Chemistry, 2022, 199, 110361.	1.4	10
80	Radiance properties of corundum and feldspar minerals under X-ray induced luminescence. Radiation Physics and Chemistry, 2022, 199, 110391.	1.4	2
81	Photon interaction of molybdenum (Mo) based cesium tri-molybdate (Cs2Mo3O10) and disodium dimolybdate (Na2Mo2O7) single crystal scintillators. Radiation Physics and Chemistry, 2022, 201, 110373.	1.4	1
82	The properties of silicate glass specimens for photon, neutron, and charged particles shielding: The roles of Bi2O3. Radiation Physics and Chemistry, 2022, 201, 110385.	1.4	9
83	Intense red emission via energy transfer from (Ce3+/Eu3+):P2O5+NaF+CaF2+AlF3 glasses for warm light sources. Ceramics International, 2021, 47, 1962-1969.	2.3	22
84	Gd3+/Sm3+energy transfer behavior and spectroscopic study of lithium gadolinium magnesium borate for solid state lighting material. Optical Materials, 2021, 111, 110657.	1.7	18
85	Wearable and flexible radiation shielding natural rubber composites: Effect of different radiation shielding fillers. Radiation Physics and Chemistry, 2021, 179, 109261.	1.4	32
86	Luminescence properties of Sm3+ doped Na2B4O7 glasses for lighting application. Journal of Luminescence, 2021, 230, 117700.	1.5	38
87	Comparative Study of Er3+ Ions Doped Phosphate Based Oxide and Oxy-fluoride Glasses for Lasers Applications. Materials Today: Proceedings, 2021, 43, 2605-2611.	0.9	0
88	Synthesis and radiation properties of Li2O-BaO-Bi2O3-P2O5 glasses. Materials Today: Proceedings, 2021, 43, 2544-2553.	0.9	36
89	Fabrication of potassium aluminium barium phosphate glasses doped with Sm3+ and their Judd-Ofelt analysis for orange lasing material application. Materials Today: Proceedings, 2021, 43, 2554-2562.	0.9	5
90	Studies of Luminescence Properties of Praseodymium Ions in Gadolinium Barium Borate Based Glasses for Reddish-Orange Lighting Applications. Materials Today: Proceedings, 2021, 43, 2516-2524.	0.9	1

#	Article	IF	CITATIONS
91	Development of bismuth sodium borate glasses for radiation shielding material. Materials Today: Proceedings, 2021, 43, 2508-2515.	0.9	17
92	Dy3+ doped B2O3 – Li2O – CaO – CaF2 glass for efficient white light emitting sources. Journal of Non-Crystalline Solids, 2021, 554, 120604.	1.5	24
93	Spectroscopy Characterization of MWCNT Doped B ₂ O ₃ -Gd ₂ O ₃ -ZnO-Er ₂ O ₃ Glass for NIR Solid State Application. Integrated Ferroelectrics, 2021, 214, 136-142.	0.3	3
94	Preparation and Structural Characterization of Dy ³⁺ -Doped PBiNaGd Glass. Integrated Ferroelectrics, 2021, 214, 151-157.	0.3	0
95	Development of New High Transparency Pb-Free Radiation Shielding Glass. Integrated Ferroelectrics, 2021, 214, 181-204.	0.3	9
96	Tunable orange, yellow and white emission of Pr3+-doped tungsten gadolinium borate glasses. Journal of Non-Crystalline Solids, 2021, 554, 120603.	1.5	12
97	Spectroscopic Properties and Judd-Ofelt Analysis of Eu ³⁺ doped Ba-Na-B Glasses for Photonic Applications. Journal of Physics: Conference Series, 2021, 1819, 012072.	0.3	5
98	Comparative Study on Au-Ag composition in Lithium Zinc Calcium Fluroborate Glasses: Nonlinear Optics Perspective. Journal of Physics: Conference Series, 2021, 1819, 012022.	0.3	2
99	Identification of Metabolic Phenotypes in Young Adults with Obesity by 1H NMR Metabolomics of Blood Serum. Life, 2021, 11, 574.	1.1	12
100	Rapid and convenient crystallization of quantum dot CsPbBr3 inside a phosphate glass matrix. Journal of Alloys and Compounds, 2021, 866, 158974.	2.8	19
101	Development of Na2O-MO-Bi2O3-B2O3-Sm2O3 glasses (MO=Ba/Mg) for laser and scintillation application Journal of Non-Crystalline Solids, 2021, 561, 120722.	1.5	8
102	Precursor Based Tuning of the Nonlinear Optical Properties of Au-Ag Bimetallic Nanoparticles Doped in Oxy-fluoroborate Glasses. Journal of Non-Crystalline Solids, 2021, 561, 120766.	1.5	12
103	Influence of trivalent praseodymium ion on SiO2–B2O3–Al2O3– BaO–CaO–Sb2O3–Na2O–Pr2O3 for X-Rays shielding and luminescence materials. Radiation Physics and Chemistry, 2021, 184, 109467.	glasses 1.4	8
104	Strong emission from Ce3+ doped gadolinium oxyfluoroborate scintillation glasses matrix. Radiation Physics and Chemistry, 2021, 185, 109497.	1.4	23
105	Radio and photo luminescence of Dy3+ doped lithium fluorophosphate scintillating glass. Radiation Physics and Chemistry, 2021, 185, 109520.	1.4	30
106	Luminescence and physical properties of Ce3+-doped potassium gadolinium phosphate glasses for radiation detector application. Radiation Physics and Chemistry, 2021, 185, 109496.	1.4	4
107	Luminescence behavior of Nd3+ions doped ZnO-BaO-(Gd2O3/GdF3)- P2O5 glasses for laser material applications. Journal of Luminescence, 2021, 236, 118139.	1.5	15
108	Structural and luminescence investigation of Ce3+ doped lithium barium gadolinium phosphate glass scintillator. Radiation Physics and Chemistry, 2021, 185, 109488.	1.4	9

#	Article	IF	CITATIONS
109	Effect of Gd2O3 on the radiation shielding, physical, optical and luminescence behaviors of Gd2O3–La2O3–ZnO–B2O3–Dy2O3 glasses. Radiation Physics and Chemistry, 2021, 185, 109500.	1.4	28
110	IR emission of Er3+ ion-doped fluoroborotellurite glass for communication application. Journal of Non-Crystalline Solids, 2021, 566, 120849.	1.5	19
111	Luminescence properties of Ce3+- doped borate scintillating glass for new radiation detection material. Radiation Physics and Chemistry, 2021, 185, 109498.	1.4	12
112	Comparative study of Dy3+ doped borate glasses on the basis of luminescence and lasing properties for white-light generation. Optical Materials, 2021, 119, 111308.	1.7	23
113	The Gamma Rays Shielding Properties of Barium Phosphate Glasses in Energy Range 1 keV to 10 ⁸ keV. Journal of Physics: Conference Series, 2021, 2013, 012017.	0.3	1
114	Optical absorption and photoluminescence investigations Dy ³ + doped oxyfluoride phosphate glass system for active laser medium and solid-state lighting materials. Journal of Physics: Conference Series, 2021, 2013, 012020.	0.3	3
115	Development of bismuth alumino borosilicate glass for radiation shielding material. Radiation Physics and Chemistry, 2021, 186, 109542.	1.4	14
116	Spectral investigation of lithium-telluride based glasses doped with Sm3+-ions for lighting application. Journal of Alloys and Compounds, 2021, 875, 160095.	2.8	18
117	Visible to infrared emission from (Eu3+/Nd3+):B2O3Â+ÂAlF3Â+ÂNaFÂ+ÂCaF2 glasses for luminescent solar converters. Optics and Laser Technology, 2021, 141, 107170.	2.2	15
118	Physical and Optical Properties of CuO doped in Glasses Prepared from Rice Husk Ash in Suphan Buri Province, Thailand. Journal of Physics: Conference Series, 2021, 2013, 012002.	0.3	1
119	Luminescence and scintillation properties of Ce3+-doped P2O5-Li2CO3-GdBr3-Al2O3 glasses. Journal of Non-Crystalline Solids, 2021, 567, 120914.	1.5	17
120	The Barium Borosilicate Glass on Neutron/Gamma Rays Shielding from Theoretical Values Computation at 1 keV to 100 GeV of the Energy Range. Journal of Physics: Conference Series, 2021, 2013, 012016.	0.3	0
121	Visible luminescence properties of Sm ³⁺ -dope barium gadolinium glasses. Journal of Physics: Conference Series, 2021, 2013, 012021.	0.3	Ο
122	Effective red-orange luminescence and energy transfer from Gd3+ to Eu3+ in lithium gadolinium magnesium borate for optical devices. Journal of Non-Crystalline Solids, 2021, 569, 120927.	1.5	12
123	Photon interaction and electron nonproportional response of CLYC scintillation material. Radiation Physics and Chemistry, 2021, 188, 109565.	1.4	2
124	Fabrication of K2O–Al2O3–Gd2O3–P2O5 glasses for photonic and scintillation materials applications. Radiation Physics and Chemistry, 2021, 188, 109639.	1.4	5
125	The radioluminescence and photoluminescence behaviour of lithium alumino borate glasses doped with Tb2O3 and Gd2O3 for green luminescence applications. Optical Materials, 2021, 121, 111437.	1.7	10
126	The photon interactions and build-up factor for gadolinium sodium borate glass: Theoretical and experimental approaches. Radiation Physics and Chemistry, 2021, 188, 109561.	1.4	10

#	Article	IF	CITATIONS
127	Electron and photon responses of CWO scintillation crystal. Radiation Physics and Chemistry, 2021, 189, 109749.	1.4	0
128	Scintillation respond and orange emission from Sm3+ ion doped tellurite and fluorotellurite glasses: A comparative study. Radiation Physics and Chemistry, 2021, 189, 109754.	1.4	17
129	Effect of Gd2O3 concentration on X-rays induced and photoluminescence characteristics of Eu3+ - Activated Gd2O3–B2O3 glass. Radiation Physics and Chemistry, 2021, 189, 109681.	1.4	7
130	Synthesis and characterization of CeF3‒doped (74.5-x)P2O5:20Li2O:5Al2O3:x(GdF3, LaF3 and YF3) glasses. Radiation Physics and Chemistry, 2021, 189, 109700.	1.4	6
131	Thermal Correction of Eu3+doped Na2O-Al2O3-P2O5 Classes System. Materials Today: Proceedings, 2021, 43, 2490-2497.	0.9	1
132	Bright white light emission from (Gd3+ /Dy3+) dual doped transparent lithium aluminum borate glasses for W- LED application. Optical Materials, 2021, 122, 111705.	1.7	11
133	Physical and Luminescence Studies of Er ³⁺ -Doped into Borate Glass for IR Lighting Application. Integrated Ferroelectrics, 2021, 221, 12-19.	0.3	0
134	Molecular dynamics simulation and luminescence properties of Eu3+ doped molybdenum gadolinium borate glasses for red emission. Journal of Alloys and Compounds, 2020, 813, 151914.	2.8	73
135	Physical, optical properties and radiation shielding studies of xLa2O3-(100-x)B2O3 glass system. Ceramics International, 2020, 46, 5380-5386.	2.3	26
136	Effect of Sodium Oxide and Sodium Fluoride in Gadolinium Phosphate Glasses Doped with Eu2O3 Content. Journal of Physics: Conference Series, 2020, 1428, 012029.	0.3	0
137	Photoluminescence and energy transfer studies in Ce3+ and Sm3+ activated P2O5+K2O+Al2O3+BaF2+NaF2 glasses for solid state lighting. Optical Materials, 2020, 99, 109576.	1.7	14
138	Effect of sodium oxide and sodium fluoride in gadolinium phosphate glasses doped with Eu2O3 content. Journal of Luminescence, 2020, 219, 116950.	1.5	30
139	X-ray/proton and photoluminescence behaviors of Sm3+ doped high-density tungsten gadolinium borate scintillating glass. Journal of Alloys and Compounds, 2020, 849, 156574.	2.8	34
140	Structural and luminescence study of Dy3+ doped phosphate glasses for solid state lighting applications. Optical Materials, 2020, 109, 110322.	1.7	19
141	Spectroscopic study of Nd3+ ion-doped Zn-Al-Ba borate glasses for NIR emitting device applications. Optical Materials, 2020, 107, 110018.	1.7	43
142	Development of Eu3+-doped phosphate glass for red luminescent solid-state optical devices. Journal of Luminescence, 2020, 227, 117564.	1.5	34
143	Eu ³⁺ ions doped SrO-CaO-Li ₂ O ₋ B ₂ O ₃ glasses foroptical display material application. Journal of Physics: Conference Series, 2020, 1485, 012053.	0.3	4
144	Effect of BaO on lead free zinc barium tellurite glass for radiation shielding materials in nuclear application. Journal of Non-Crystalline Solids, 2020, 550, 120386.	1.5	42

#	Article	IF	CITATIONS
145	X-ray induced luminescence, optical, compositional and structural investigations of natural and imitation rubies: Identification technique. Radiation Physics and Chemistry, 2020, 177, 109089.	1.4	4
146	Novel plaster waste glass for solid state lighting applications. Optical Materials, 2020, 109, 110180.	1.7	1
147	Photoluminescence properties of Bi2MoO6:Dy3+ phosphors fabricated by solid state reactions. AIP Conference Proceedings, 2020, , .	0.3	2
148	Calculation of The Radiation Shielding Parameters in Long Ranges of Photon Energy: Bismuth Sodium Borate Glass. Journal of Physics: Conference Series, 2020, 1485, 012027.	0.3	2
149	Effect of SnO2/SeO2 on Au nano-particles doped silicate glasses: a structural study using XAS and EXAFS refinements. Optical and Quantum Electronics, 2020, 52, 1.	1.5	6
150	RADIO-OPTICAL response of cerium-doped lithium gadolinium bismuth borate glasses. Journal of Luminescence, 2020, 224, 117341.	1.5	14
151	Luminescence and Scintillation Properties of Dy3+ doped Li6Y(BO3)3 crystal. Optical Materials, 2020, 106, 109973.	1.7	13
152	Spectroscopic study and energy transfer behavior of Gd3+ to Dy3+ for Li2O–MgO-Gd2O3–B2O3–Dy2O3 glasses for white emission material. Journal of Luminescence, 2020, 226, 117380.	1.5	27
153	Synthesis and characterization of borate glasses for thermal neutron scintillation and imaging. Radiation Measurements, 2020, 134, 106319.	0.7	10
154	Investigations on nonlinear optical properties of gold nanoparticles doped fluoroborate glasses for optical limiting applications. Journal of Non-Crystalline Solids, 2020, 538, 120010.	1.5	30
155	High density tungsten gadolinium borate glasses doped with Eu3+ ion for photonic and scintillator applications. Radiation Physics and Chemistry, 2020, 172, 108868.	1.4	56
156	Reddish-orange emission and Judd-Ofelt investigation of Sm3+ ions doped in zince-bismuth-phospho-tellurite glasses for solid lighting application. Journal of Luminescence, 2020, 226, 117498.	1.5	26
157	The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiation Physics and Chemistry, 2020, 172, 108791.	1.4	102
158	The study on Er ³⁺ doped lithium bismuth aluminium borate glass for infrared medium applications. Journal of Physics: Conference Series, 2020, 1428, 012034.	0.3	4
159	The Dy ₂ O ₃ Effect Study on Spectroscopy and Optical Properties of PbiNaGd Glass for Optical Amplification. Journal of Physics: Conference Series, 2020, 1428, 012067.	0.3	3
160	Mechanical and radiation shielding properties of flexible material based on natural rubber/ Bi2O3 composites. Radiation Physics and Chemistry, 2020, 172, 108772.	1.4	59
161	Comparative study of optical and luminescence properties of Sm3+-ions doped Li2O–Gd2O3–PbO–SiO2 and Li2O-GdF3-PbO–SiO2 glasses for orange emission solid state device application. Journal of Luminescence, 2020, 222, 117136.	1.5	25
162	Synthesis and Luminescence properties of Lithium Aluminium Phosphate Glasses Doped with Nd3+ Ion for Laser Medium. Journal of Physics: Conference Series, 2020, 1428, 012032.	0.3	4

#	Article	IF	CITATIONS
163	Structural and Radiation Shielding Properties of Dy ³⁺ doped Phosphate Glasses. Journal of Physics: Conference Series, 2020, 1428, 012016.	0.3	5
164	Development of WO3-Gd2O3Ë— B2O3 high density glasses doped with Dy3+ for photonics and scintillation materials application. Solid State Sciences, 2020, 101, 106135.	1.5	40
165	Structural analysis and luminescence studies of Ce3+: Dy3+ co-doped calcium zinc gadolinium borate glasses using EXAFS. Radiation Physics and Chemistry, 2020, 171, 108695.	1.4	30
166	Photoluminescence properties and energy transfer investigations of Gd3+ and Sm3+ co-doped ZnO–BaO–TeO2 glasses for solid state laser application. Journal of Luminescence, 2020, 224, 117275.	1.5	27
167	Room-temperature rapid synthesis of Cul thin films via liquid iodination method. Superlattices and Microstructures, 2020, 141, 106501.	1.4	11
168	Investigation of XANES study and energy transport phenomenon of Gd3+ to Ce3+ in CaO–SiO2–B2O3 glasses. Optical Materials, 2020, 102, 109826.	1.7	35
169	The Physical, Optical, Photo and Radioluminescence Studies of Dy3+ Doped Zinc Barium Gadolinium Phosphate Glasses. Glass Physics and Chemistry, 2020, 46, 474-486.	0.2	3
170	Light-emitting CaMoO4:Dy3+ phosphors for photonic materials: Synthesis and luminescence proceedings, 2020, , .	0.3	1
171	Study on radiation shielding properties of glass samples doped with holmium. AIP Conference Proceedings, 2020, , .	0.3	2
172	Photoluminescence Properties of Dy3+ Ion-Doped Li2O-PbO-Gd2O3-SiO2 Glasses for White Light Application. Brazilian Journal of Physics, 2019, 49, 605-614.	0.7	19
173	Dy3+ ions doped (Na2O/NaF)-Gd2O3–P2O5 glasses for solid state lighting material applications. Solid State Sciences, 2019, 97, 105972.	1.5	25
174	Investigation of luminescence properties of Dy3+ doped LiF–Na2O– K2O–B2O3 glasses for white light generation. Journal of Alloys and Compounds, 2019, 805, 896-903.	2.8	31
175	Structural and spectroscopic properties of Er3+ doped sodium lithium borate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117342.	2.0	65
176	Investigation of Li2O–Gd2O3–MO–B2O3–Nd2O3 (MO=Ba/Bi) glasses for laser applications by Judd–Oflet (J–O) theory. Journal of Luminescence, 2019, 215, 116639.	1.5	10
177	1.5â€-μm luminescence enhancement of Er3+ by local field surface plasmon resonance of Ag nanoparticles in silicate glasses. Journal of Non-Crystalline Solids, 2019, 521, 119522.	1.5	31
178	Effects of BaO and Bi ₂ O ₃ on the optical and luminescence properties of Dy ³⁺ doped borophosphate glasses. Journal of Physics: Conference Series, 2019, 1259, 012003.	0.3	3
179	Physical, optical and gamma-ray shielding properties of BaO- La2O3-B2O3 and BaO-Na2O-B2O3 glass systems at 662 keV. Journal of Physics: Conference Series, 2019, 1259, 012012.	0.3	0
180	Energy Transfer and Spectroscopic Investigation of Dy2O3 Doped Li2O–BaO–GdF3–SiO2 for White Light LED. Glass Physics and Chemistry, 2019, 45, 332-343.	0.2	13

#	Article	IF	CITATIONS
181	Development of ZnO–BaO–B2O3–TeO2 glass doped with Sm3+ for orange emitting material. Solid State Sciences, 2019, 98, 106041.	1.5	11
182	Effect of Alkali Oxides on Luminescence Properties of Eu3+-doped Aluminium Phosphate Glasses. Materials Today: Proceedings, 2019, 17, 1906-1913.	0.9	12
183	An extensive investigation of physical, optical and radiation shielding properties for borate glasses modified with gadolinium oxide. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	27
184	Enhancement of Emission Intensity in Dy3+-Doped ZnO/ZnF2 Phosphoborate Glasses for W-LED Materials. Journal of Physics: Conference Series, 2019, 1259, 012004.	0.3	3
185	Physical and Luminescence Study of Nd3+ ions doped Phosphate Glass for Lasing Applications. Materials Today: Proceedings, 2019, 17, 1800-1808.	0.9	3
186	Structural, spectroscopic and optical gain of Nd3+ doped fluorophosphate glasses for solid state laser application. Journal of Luminescence, 2019, 216, 116738.	1.5	86
187	White emission from NaO-BaO-Bi2O3-SiO2 Glass system Doped with Dy3+. Materials Today: Proceedings, 2019, 17, 1774-1779.	0.9	8
188	X-ray Induced Luminescence and Physical Properties of Lithium Lanthanum Borate Glass Doped with Ce3+ for Radiation Detection Material. Materials Today: Proceedings, 2019, 17, 1787-1793.	0.9	9
189	Development of Eu3+ doped boro-tellurite oxyfluoride glass and their Judd-Ofelt analysis for red laser gain medium application. Materials Today: Proceedings, 2019, 17, 1815-1822.	0.9	5
190	Luminescence properties of Nd3+ ions doped P2O5-Li2O3-GdF3 glasses for laser applications. Optik, 2019, 199, 163218.	1.4	14
191	Luminescence characteristics of Sm3+-doped lithium barium gadolinium silicate glasses for Orange LED's. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 14-20.	2.0	39
192	Radio, cathodo and photoluminescence investigations of high density WO3-Gd2O3-B2O3 glass doped with Tb3+. Radiation Physics and Chemistry, 2019, 164, 108350.	1.4	34
193	Physical, optical and luminescence properties of the Dy3+doped barium borophosphate glasses. Journal of Non-Crystalline Solids, 2019, 521, 119483.	1.5	36
194	Spectral Analysis of Ho3+ Doped Barium Zinc Boro-Tellurite Glasses for Yellow-Green Luminescent Applications. Glass Physics and Chemistry, 2019, 45, 29-35.	0.2	3
195	High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application. Radiation Physics and Chemistry, 2019, 160, 41-47.	1.4	190
196	Physical and luminescence properties of samarium doped oxide and oxyfluoride phosphate glasses. Materials Chemistry and Physics, 2019, 229, 514-522.	2.0	40
197	Optical and X-ray induced luminescence of Sm3+ -doped borotellurite and fluoroborotellurite glasses: A comparative study. Journal of Luminescence, 2019, 213, 19-28.	1.5	40
198	Investigation of luminescence and lasing properties of Dy3+-doped-borate glasses for white light generation. Solid State Sciences, 2019, 90, 68-75.	1.5	25

#	Article	IF	CITATIONS
199	Spectroscopy Study of Sm3+ Doped Fluorosilicate Glasses for Orange Emission Solid-State Device Application. Glass Physics and Chemistry, 2019, 45, 447-458.	0.2	12
200	Sm3+ Doped Lithium Strontium Borate Glasses for Solid State Lighting Applications. Glass Physics and Chemistry, 2019, 45, 472-484.	0.2	8
201	Physical, structural, optical, and radiation shielding properties of B2O3–Gd2O3–Y2O3 glass system. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	20
202	Non-Proportionality Electron Response and Energy Resolution of LaBr3:Ce and LuYAP:Ce Scintillating Crystals. Journal of the Korean Physical Society, 2019, 75, 672-677.	0.3	2
203	Photoluminescence and white light generation of Dy2O3 doped Li2O-BaO-Gd2O3- SiO2 for white light LED. Journal of Alloys and Compounds, 2019, 774, 244-254.	2.8	63
204	Influence of alkaline earth oxides on Eu3+ doped lithium borate glasses for photonic, laser and radiation detection material applications. Solid State Sciences, 2019, 89, 57-66.	1.5	49
205	Comparative investigations of gadolinium based borate glasses doped with Dy3+ for white light generations. Solid State Sciences, 2019, 89, 50-56.	1.5	38
206	Intriguing energy transfer mechanism in oxide and oxy-fluoride phosphate glasses. Optical Materials, 2019, 88, 429-444.	1.7	46
207	Energy transfer phenomenon of Gd3+ to excited ground state of Eu3+ ions in Li2O-BaO-Gd2O3-SiO2-Eu2O3 glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 21-29.	2.0	41
208	Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications. Journal of Rare Earths, 2019, 37, 374-382.	2.5	46
209	Crystal growth and scintillation properties of YAG:Ce3+ for \hat{I}^3 and $\hat{I}\pm$ detection. Applied Radiation and Isotopes, 2019, 145, 126-130.	0.7	5
210	Luminescence and energy transfer studies of Ce3+/Dy3+ doped fluorophosphate glasses. Journal of Luminescence, 2019, 208, 89-98.	1.5	25
211	Physical, structural and luminescence investigation of Eu 3+ -doped lithium-gadolinium bismuth-borate glasses for LEDs. Solid State Sciences, 2018, 80, 161-169.	1.5	36
212	PTR, PCR and Energy Resolution Study of GAGG:Ce Scintillator. Journal of Physics: Conference Series, 2018, 970, 012016.	0.3	0
213	Physical, optical and luminescence properties of B2O3-SiO2-Y2O3-CaO glasses with Sm3+ions for visible laser applications. Journal of Luminescence, 2018, 197, 76-82.	1.5	25
214	Development of Sm3+ doped ZnO-Al2O3-BaO-B2O3 glasses for optical gain medium. Journal of Non-Crystalline Solids, 2018, 482, 86-92.	1.5	29
215	Investigations of optical and luminescence features of Sm3+ doped Li2O-MO-B2O3 (MÂ=Mg/Ca/Sr/Ba) glasses mixed with different modifier oxides as an orange light emitting phosphor for WLED's. Journal of Alloys and Compounds, 2018, 749, 197-204.	2.8	68
216	Energy transfer based emission analysis of Eu3+ doped Gd2O3-CaO-SiO2-B2O3 glasses for laser and X-rays detection material applications. Journal of Luminescence, 2018, 194, 75-81.	1.5	66

#	Article	IF	CITATIONS
217	Optical and luminescence characteristics of Eu 3+ -doped B 2 O 3 :SiO 2 :Y 2 O 3 :CaO glasses for visible red laser and scintillation material applications. Journal of Rare Earths, 2018, 36, 482-491.	2.5	33
218	Effect of Fe2O3 and CoO co-doped in soda lime silicate glasses. AIP Conference Proceedings, 2018, , .	0.3	0
219	The Gd ₂ O ₃ effect study on properties of CaGdSiB:Tb ³⁺ glass for photonics applications. Journal of Physics: Conference Series, 2018, 1120, 012013.	0.3	4
220	Structural studies of transition metal ions doped in biomass ash as silica source for glass production in Thailand. Journal of Physics: Conference Series, 2018, 1120, 012104.	0.3	5
221	Luminescence properties and Judd-Ofelt analysis of Sm 3+ doped lithium aluminium phosphate glasses. Materials Today: Proceedings, 2018, 5, 15034-15039.	0.9	5
222	Effect of alkali oxide on optical and luminescence properties of Sm 3+ doped aluminium phosphate glasses. Materials Today: Proceedings, 2018, 5, 13891-13895.	0.9	6
223	Spectroscopic properties of Eu3+-doped gadolinium calcium phosphate and fluorophosphates glasses. Materials Today: Proceedings, 2018, 5, 13926-13933.	0.9	8
224	Comparative luminescence study of LaBMoO 6 :Tb phosphor under VIS and Near-UV excitation for green photonic applications. Materials Today: Proceedings, 2018, 5, 13940-13947.	0.9	9
225	Luminescence study and Judd-Ofelt analysis of Nd3+ doped lithium lanthanum borate glass for green laser device. Materials Today: Proceedings, 2018, 5, 13954-13962.	0.9	9
226	Development of gadolinium doped calcium phosphate oxyfluoride glasses for X-ray shielding materials. Materials Today: Proceedings, 2018, 5, 14063-14068.	0.9	9
227	Effect of the BaO addition on properties of alkali borosilicate glasses from sub-bituminous fly ash. Materials Today: Proceedings, 2018, 5, 14189-14193.	0.9	3
228	Spectroscopic and structural characterization of zinc barium tellurite glass. Materials Today: Proceedings, 2018, 5, 15072-15075.	0.9	7
229	Emission cross section and optical gain of 1.06mm laser Nd 3+ doped borate glasses. Materials Today: Proceedings, 2018, 5, 14998-15003.	0.9	13
230	A study of the magnetic susceptibility on gadolinium calcium silicoborate glass. Materials Today: Proceedings, 2018, 5, 14892-14895.	0.9	4
231	Gamma radiation shielding materials of lanthanum calcium silicoborate glasses. Materials Today: Proceedings, 2018, 5, 14901-14906.	0.9	13
232	Spectroscopy properties of Er 3+ ion doped ZnO-Al 2 O 3 -BaO-B 2 O 3 glass for photonic application. Materials Today: Proceedings, 2018, 5, 15076-15080.	0.9	3
233	Erbium-doped calcium barium phosphate glasses for 1.54 µm broadband optical amplifier. Materials Today: Proceedings, 2018, 5, 14009-14016.	0.9	6
234	Effect of Bi2O3 on radiation shielding properties of glasses from coal fly ash. Materials Today: Proceedings, 2018, 5, 14046-14051.	0.9	14

#	Article	IF	CITATIONS
235	Investigation of the luminescence properties of Sm 3+ activated mixed alkali borate glasses. Materials Today: Proceedings, 2018, 5, 15019-15023.	0.9	8
236	Physical and optical investigation of lutetium-sodium-borate glasses. Materials Today: Proceedings, 2018, 5, 15054-15060.	0.9	7
237	Physical, optical and luminescence properties of Sm 3+ doped lithium aluminium phosphate glass system. Materials Today: Proceedings, 2018, 5, 15066-15071.	0.9	7
238	Glass medium doped rare earth for sensor material. Materials Today: Proceedings, 2018, 5, 15126-15130.	0.9	7
239	The light yield non-proportionality and electron energy resolution study of CsI(Tl) scintillator by Compton coincidence technique (CCT). Materials Today: Proceedings, 2018, 5, 15110-15114.	0.9	3
240	Development of gamma rays transmission measurement technique for thickness determination of multi-layer materials. AIP Conference Proceedings, 2018, , .	0.3	0
241	Preparing the transparent Gadolinium Silicoborate glass for radiation shielding material. Journal of Physics: Conference Series, 2018, 1120, 012076.	0.3	2
242	Scintillation Properties of Ce3+ Doped Silicon-Magnesium-Aluminum-Lithium Glass Scintillators by using Radiation Sources. Journal of the Korean Physical Society, 2018, 73, 1174-1179.	0.3	4
243	Yellow and blue emission from BaO-(ZnO/ZnF2) B2O3TeO2 glasses doped with Dy3+ for laser medium and scintillation material applications. Optical Materials, 2018, 85, 382-390.	1.7	45
244	Luminescence characterization of Sm3+-doped sodium potassium borate glasses for laser application. Journal of Alloys and Compounds, 2018, 766, 828-840.	2.8	57
245	Development of Eu3+ doped Li2O-BaO-GdF3-SiO2 oxyfluoride glass for efficient energy transfer from Gd3+ to Eu3+ in red emission solid state device application. Journal of Luminescence, 2018, 203, 515-524.	1.5	51
246	Ce3+ doped glass for radiation detection material. Ceramics International, 2018, 44, S172-S176.	2.3	37
247	Sm3+-Doped Molybdenum Gadolinium Borate Glasses for Orange Emission Laser Active Medium. Ukrainian Journal of Physics, 2018, 63, 721.	0.1	14
248	Radioluminescence and optical studies of gadolinium calcium phosphate oxyfluoride glasses doped with Sm3+. Radiation Physics and Chemistry, 2017, 137, 62-67.	1.4	53
249	Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiation Physics and Chemistry, 2017, 137, 72-77.	1.4	161
250	A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Progress in Nuclear Energy, 2017, 97, 53-59.	1.3	74
251	White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses. Optical Materials, 2017, 66, 559-566.	1.7	90
252	Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application. Journal of Alloys and Compounds, 2017, 704, 557-564.	2.8	50

#	Article	IF	CITATIONS
253	Development of gadolinium calcium phosphate oxyfluoride glass for radiation shielding materials. Integrated Ferroelectrics, 2017, 177, 48-58.	0.3	6
254	Studies of radiative and mechanical properties of Nd 3+ -doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system. Journal of Luminescence, 2017, 188, 558-566.	1.5	35
255	Effect of Nd ³⁺ ions on the properties of calcium and strontium barium phosphate glasses. Integrated Ferroelectrics, 2017, 177, 30-38.	0.3	2
256	Development of lithium yttrium borate glass doped with Dy 3+ for laser medium, W-LEDs and scintillation materials applications. Journal of Non-Crystalline Solids, 2017, 464, 96-103.	1.5	87
257	Development of Dy3+-doped Gd2MoB2O9 phosphor and their luminescence behavior. Integrated Ferroelectrics, 2017, 177, 39-47.	0.3	6
258	Effect of alkaline earth oxides on the physical and spectroscopic properties of Dy 3+ - doped Li 2 O-B 2 O 3 glasses for white emitting material application. Optical Materials, 2017, 64, 268-275.	1.7	56
259	Comparative study of Sm3+ doped in Li2O3-RE2O3-B2O3 (RE = Y/La) glasses system for laser medium application. Results in Physics, 2017, 7, 3698-3703.	2.0	24
260	Optical spectroscopy and emission properties of Ho3+-doped gadolinium calcium silicoborate glasses for visible luminescent device applications. Journal of Non-Crystalline Solids, 2017, 474, 50-57.	1.5	34
261	Luminescence study and Judd-Ofelt analysis of CaO-BaO-P 2 O 5 glasses doped with Nd 3+ ions. Materials Today: Proceedings, 2017, 4, 6091-6098.	0.9	13
262	Properties of erbium luminescence in barium borophosphate glasses. Materials Today: Proceedings, 2017, 4, 6099-6104.	0.9	15
263	Development of bismuth borosilicate glass doped with Eu 3+ for reddish orange emission materials application. Materials Today: Proceedings, 2017, 4, 6389-6396.	0.9	10
264	Comparative study of Al 2 O 3 -MO-BaO-P 2 O 5 glasses doped with Sm 3+ (MO = Na 2 O and ZnO). Materials Today: Proceedings, 2017, 4, 6415-6422.	0.9	7
265	CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand. Results in Physics, 2017, 7, 3449-3454.	2.0	9
266	Spectroscopic properties and Judd-Ofelt analysis of Sm 3+ ions in barium sodium borate glasses. Materials Today: Proceedings, 2017, 4, 6224-6233.	0.9	10
267	Optical and luminescence properties of Dy3+ doped sodium silicate glass. AIP Conference Proceedings, 2017, , .	0.3	3
268	Physical, vibrational, optical and luminescence investigations of Dy3+-doped yttrium calcium silicoborate glasses for cool white LED applications. Journal of Alloys and Compounds, 2017, 726, 1062-1071.	2.8	83
269	Photoluminescence and white light generation behavior of lithium gadolinium silicoborate glasses. Journal of Alloys and Compounds, 2017, 695, 2347-2355.	2.8	45
270	Spectroscopic investigations of Nd3+ doped gadolinium calcium silica borate glasses for the NIR emission at 1059Ânm. Journal of Alloys and Compounds, 2017, 695, 590-598.	2.8	82

#	Article	IF	CITATIONS
271	Scintillation and luminescence characteristics of Ce3+doped in Li2O–Gd2O3–BaO–B2O3 scintillating glasses. Radiation Physics and Chemistry, 2017, 130, 158-163.	1.4	56
272	Energy transfer from Gd3+ to Sm3+ and luminescence characteristics of CaO–Gd2O3–SiO2–B2O3 scintillating glasses. Journal of Luminescence, 2017, 181, 382-386.	1.5	86
273	Monte Carlo Design and Experiments on the Neutron Shielding Performances of B2O3–ZnO–Bi2O3 Glass System. Glass Physics and Chemistry, 2017, 43, 560-563.	0.2	16
274	Enhancement of Luminescence Light Yield of Ln3+ Doped Glass By Oxyfluoride Glass Matrix. , 2017, , .		0
275	The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG:Ce and CaMoO 4 scintillators. Progress in Nuclear Energy, 2016, 92, 48-53.	1.3	35
276	Structural and optical characteristics of Eu3+ ions in sodium-lead-zinc-lithium-borate glass system. Journal of Molecular Structure, 2016, 1121, 180-187.	1.8	117
277	The photoluminescence, optical and physical properties of Sm3+-doped lithium yttrium borate glasses. Journal of Commonwealth Law and Legal Education, 2016, 57, 85-89.	0.2	17
278	A Study of Radioactive Contamination of Crystals for the AMoRE Experiment. IEEE Transactions on Nuclear Science, 2016, 63, 543-547.	1.2	15
279	Luminescence behavior of Nd3+-activated soda-lime-borate glasses for solid-state lasers applications. Journal of Non-Crystalline Solids, 2016, 452, 307-311.	1.5	33
280	Gamma-ray and neutron shielding efficiency of Pb-free gadolinium-based glasses. Nuclear Science and Techniques/Hewuli, 2016, 27, 1.	1.3	30
281	Non-proportionality study of CaMoO4 and GAGG:Ce scintillation crystals using Compton coincidence technique. Applied Radiation and Isotopes, 2016, 115, 221-226.	0.7	8
282	Development of Li 2 O-SrO-GdF 3 -B 2 O 3 oxyfluoride glass for white light LED application. Journal of Molecular Structure, 2016, 1125, 601-608.	1.8	25
283	Luminescence properties of Dy3+ doped lanthanum-calcium-silicaborate glass scintillator. Journal of the Korean Physical Society, 2016, 69, 1105-1109.	0.3	5
284	Influence of Er3+ ion concentration on optical and photoluminescence properties of Er3+-doped gadolinium-calcium silica borate glasses. Journal of Alloys and Compounds, 2016, 683, 590-598.	2.8	95
285	Luminescence characteristics of Dy3+ doped Gd2O3-CaO-SiO2-B2O3 scintillating glasses. Journal of Rare Earths, 2016, 34, 583-589.	2.5	124
286	Photoluminescence Properties of CaO-BaO-P ₂ O ₅ Glass Systems Doped with Sm ³⁺ . Key Engineering Materials, 2016, 675-676, 368-371.	0.4	6
287	Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator. Radiation Measurements, 2016, 90, 166-169.	0.7	33
288	Investigation of luminescence and laser transition of Dy3+ in Li2O-Gd2O3-Bi2O3-B2O3 glasses. Optical Materials, 2016, 55, 136-144.	1.7	74

#	Article	IF	CITATIONS
289	Optical and luminescence properties of Li2O Gd2O3MO B2O3Sm2O3 (MO Bi2O3, BaO) glasses. Journal of Alloys and Compounds, 2016, 676, 275-285.	2.8	75
290	Ultra-sensitive NO 2 sensor based on vertically aligned SnO 2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. Sensors and Actuators B: Chemical, 2016, 223, 936-945.	4.0	57
291	Luminescence from lanthanides-doped glasses and applications: A review. , 2015, , .		8
292	Optical and luminescence characteristics of Eu3+ doped zinc bismuth borate (ZBB) glasses for red emitting device. Materials Research Bulletin, 2015, 71, 37-41.	2.7	79
293	Development of barium borosilicate glasses for radiation shielding materials using rice husk ash as a silica source. Progress in Nuclear Energy, 2015, 83, 99-104.	1.3	45
294	Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique. , 2014, , .		0
295	Preparation of ruby red glasses from gold nanoparticles: Influence of stannic oxide. , 2014, , .		2
296	Fabrication of artificial gemstones from glasses: From waste to jewelry. , 2014, , .		2
297	Up- and Downconversion Luminescence Properties of Nd3+Ions Doped in Bi2O3–BaO–B2O3Class System. Advances in Materials Science and Engineering, 2014, 2014, 1-5.	1.0	6
298	Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiation Physics and Chemistry, 2014, 98, 14-21.	1.4	161
299	Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Annals of Nuclear Energy, 2014, 68, 4-9.	0.9	150
300	Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study. Journal of Non-Crystalline Solids, 2014, 404, 167-173.	1.5	214
301	New gadolinium based glasses for gamma-rays shielding materials. Nuclear Engineering and Design, 2014, 280, 21-26.	0.8	93
302	Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: A new technique for identifying the origin of gemstone. Radiation Physics and Chemistry, 2014, 103, 67-71.	1.4	22
303	Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering. Annals of Nuclear Energy, 2013, 53, 64-68.	0.9	50
304	ESR and spectral studies of Er3+ ions in soda-lime silicate glass. Physica B: Condensed Matter, 2013, 409, 24-29.	1.3	9
305	Investigation on radiation shielding parameters of bismuth borosilicate glass from 1keV to 100GeV. Annals of Nuclear Energy, 2013, 55, 23-28.	0.9	141
306	Development of Barium Borosilicate Glass Using Rice Husk Ash: Effect of BaO. Advanced Materials Research, 2013, 770, 201-204.	0.3	8

#	Article	IF	CITATIONS
307	Structural, Optical and Radiation Shielding Properties of BaO-B2O3-Rice Husk Ash Glasses. Procedia Engineering, 2012, 32, 734-739.	1.2	19
308	Luminescence property of rare-earth-doped bismuth-borate glasses with different concentrations of bismuth and rare-earth material. Journal of the Korean Physical Society, 2012, 61, 248-253.	0.3	9
309	Improvement of BaO:B2O3:Fly ash glasses: Radiation shielding, physical and optical properties. Annals of Nuclear Energy, 2012, 49, 109-113.	0.9	37
310	Utilization of rice husk fly ash in the color glass production. Procedia Engineering, 2012, 32, 670-675.	1.2	26
311	Investigation on the Physical and Optical Properties of Dy3+ Doped Soda-Lime-Silicate Glasses. Procedia Engineering, 2012, 32, 690-698.	1.2	59
312	Comparative Study of Optical and Spectroscopic Properties of Lead and Bismuth on Borosilicate Glasses. Procedia Engineering, 2012, 32, 699-705.	1.2	15
313	The Effect of Heat Treatment on Crystal Structure in Zircon Monitored by ESR and XRD. Procedia Engineering, 2012, 32, 706-713.	1.2	4
314	Photon Interaction in Borate Glass Doped with Bi2O3 at Different Energies. Procedia Engineering, 2012, 32, 727-733.	1.2	5
315	Optical Characterization of Soda Lime Borosilicate Glass Doped with TiO2. Procedia Engineering, 2012, 32, 772-779.	1.2	29
316	Physical and optical properties of the SLS glass doped with low Cr2O3 concentrations. Procedia Engineering, 2012, 32, 787-792.	1.2	17
317	Formation and Optical Absorption of CuO-Doped SLS System. Procedia Engineering, 2012, 32, 807-813.	1.2	11
318	The parameters of photon energy absorption for silicate glasses containing with BaO, PbO and Bi2O3. Procedia Engineering, 2012, 32, 833-838.	1.2	2
319	Solar drying of Andrographis paniculata using a parabolicshaped solar tunnel dryer. Procedia Engineering, 2012, 32, 839-846.	1.2	23
320	Mass Attenuation Coefficient and Effective Atomic Number of Ag/Cu/Zn Alloy at Different Photon Energy by Compton Scattering Technique. Procedia Engineering, 2012, 32, 847-854.	1.2	21
321	Luminescence Property of Rare-Earth Doped Bismuth-Borate Glasses. Procedia Engineering, 2012, 32, 855-861.	1.2	21
322	The Color Change of Natural Green Sapphires by Heat Treatment. Procedia Engineering, 2012, 32, 950-955.	1.2	5
323	Simulated radiation attenuation properties of cement containing with BaSO4 and PbO. Procedia Engineering, 2012, 32, 976-981.	1.2	17
324	Effect of BaO on Optical, Physical and Radiation Shielding Properties of SiO2-B2O3-Al2O3-CaO-Na2O Glasses System. Procedia Engineering, 2012, 32, 1080-1086.	1.2	75

#	Article	IF	CITATIONS
325	Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1keV to 100GeV. Annals of Nuclear Energy, 2012, 41, 119-124.	0.9	111
326	Properties of CoO doped in Glasses Prepared from Rice Hush Fly Ash in Thailand. IOP Conference Series: Materials Science and Engineering, 2011, 18, 112008.	0.3	14
327	Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties. Annals of Nuclear Energy, 2011, 38, 1438-1441.	0.9	143
328	Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. Journal of Physics and Chemistry of Solids, 2011, 72, 245-251.	1.9	218
329	A Biomarkers Study: Trace Metal Elements in Paphia Undulate Shell for Assessing Pollution of Coastal Area. Procedia Engineering, 2011, 8, 80-84.	1.2	3
330	Optical and Structural Investigation of Bismuth Borate Glasses Doped With Dy3+. Procedia Engineering, 2011, 8, 195-199.	1.2	23
331	Study on Interaction of Bi2O3, PbO and BaO in Silicate Glass System at 662 keV for Development of Gamma-Rays Shielding Materials. Progress in Nuclear Science and Technology, 2011, 1, 106-109.	0.3	28
332	Development of BaO:B2O3:Flyash Glass System for Gamma-rays shielding Materials. Progress in Nuclear Science and Technology, 2011, 1, 110-113.	0.3	18
333	X-ray and Proton Luminescences of Bismuth-borate Glasses. Journal of the Korean Physical Society, 2011, 59, 657-660.	0.3	16
334	Interaction of 662 keV Gamma-rays with Bismuth-based Glass Matrices. Journal of the Korean Physical Society, 2011, 59, 661-665.	0.3	26
335	Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662keV. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619, 295-297.	0.7	78
336	Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO. Journal of Nuclear Materials, 2010, 399, 38-40.	1.3	127
337	Optical and electronic polarizability investigation of Nd3+-doped soda-lime silicate glasses. Journal of Physics and Chemistry of Solids, 2010, 71, 965-970.	1.9	129
338	Nonproportionality of electron response using CCT: Plastic scintillator. Applied Radiation and Isotopes, 2010, 68, 1780-1784.	0.7	19
339	Gamma-rays shielding properties of xPbO:(100â~'x)B2O3 glasses system at 662keV. Annals of Nuclear Energy, 2009, 36, 1360-1365.	0.9	111
340	Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1260-1265.	1.1	118
341	Measurement of Mass Attenuation Coefficients of Blue Sapphire at Different Photon Energy by Compton Scattering Technique. Applied Mechanics and Materials, 0, 103, 71-75.	0.2	17
342	Preparation of Ruby Red Glasses from Gold Nanoparticles: Influence of Soaking Time. Advanced Materials Research, 0, 770, 96-99.	0.3	3

#	Article	IF	CITATIONS
343	Fabrication and Characterization of Antibacterial Ag-TiO ₂ Thin Films Prepared by DC Magnetron Co-Sputtering Technique. Advanced Materials Research, 0, 770, 221-224.	0.3	5
344	Investigations of Physical and Optical Properties on Glass from Rice Husk Ash Doped with MnO ₂ . Advanced Materials Research, 0, 770, 14-17.	0.3	1
345	Visible Luminescence of Pr ³⁺ in Bismuth Borate Classes. Advanced Materials Research, 0, 770, 59-63.	0.3	5
346	Physical, Structural and Luminescence Properties of ZnO-Bi ₂ O ₃ -B ₂ O ₃ Glass System. Applied Mechanics and Materials, 0, 431, 8-13.	0.2	10
347	Physical and Gamma-Ray Shielding Properties of Strontium Borosilicate Glasses. Advanced Materials Research, 0, 979, 236-239.	0.3	1
348	Mass Attenuation Coefficients and Partial Interactions of BaO-ZnO-B ₂ O ₃ Glasses System. Key Engineering Materials, 0, 675-676, 438-442.	0.4	2
349	Radiation Shielding Properties of Bi ₂ O ₃ -Na ₂ O-B ₂ O& of 662 keV. Key Engineering Materials, 0, 702, 77-82.	llt çsı ab>	3 </ sub&g
350	Effect of SeO ₂ on Coloration in Gold Nanoparticles Glass System. Key Engineering Materials, 0, 728, 187-192.	0.4	1
351	A Novel Radiation Shielding Material for Gamma-Ray: The Development of Lutetium Lithium Borate Glasses. Key Engineering Materials, 0, 766, 246-251.	0.4	13
352	Radiation Shielding Properties of BaO-ZnO-B ₂ O ₃ Glass for X-Ray Room. Key Engineering Materials, 0, 766, 88-93.	0.4	6
353	Investigations on Luminescence Properties of Ce ³⁺ Ion Doped Bismuth Borophosphate Glasses. Applied Mechanics and Materials, 0, 879, 22-26. XANES and Luminescence Studies of	0.2	3
354	M ₂ O ₃ -CaO-SiO ₂ -B ₂ (M ₂ O ₃ =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 302 Td (Y _{Sub>}	t;O <sub gt;20:4</sub 	>3u <u>þ</u> >O<
355	lons. Key Engineering Materials, 0, 780, 37-42. Non-Proportionality and Scintillation Properties of YAG:Ce Scintillator by Compton Coincidence Technique, Key Engineering Materials, 0, 766, 99-104	0.4	1