
Hitoshi Ogihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. Journal of Catalysis, 2003, 217, 79-79.	6.2	251
2	Shape-Controlled Synthesis of ZrO2, Al2O3, and SiO2 Nanotubes Using Carbon Nanofibers as Templates. Chemistry of Materials, 2006, 18, 4981-4983.	6.7	108
3	Formation of highly concentrated hydrogen through methane decomposition over Pd-based alloy catalysts. Journal of Catalysis, 2006, 238, 353-360.	6.2	73
4	Synergy of Ru and Ir in the Electrohydrogenation of Toluene to Methylcyclohexane on a Ketjenblack-Supported Ru-Ir Alloy Cathode. ACS Catalysis, 2019, 9, 2448-2457.	11.2	46
5	Direct Nonoxidative Conversion of Methane to Higher Hydrocarbons over Silica-Supported Nickel Phosphide Catalyst. ACS Catalysis, 2020, 10, 375-379.	11.2	40
6	Liquidâ€Metal Indium Catalysis for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons. ChemistrySelect, 2017, 2, 4572-4576.	1.5	37
7	Green Synthesis of Methyl Formate via Electrolysis of Pure Methanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 11532-11540.	6.7	26
8	Immobilization of nanofibrous metal oxides on microfibers: A macrostructured catalyst system functionalized with nanoscale fibrous metal oxides. Chemical Communications, 2007, , 4047.	4.1	25
9	Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates. Journal of Solid State Chemistry, 2009, 182, 1587-1592.	2.9	24
10	Pyrolysis of mixtures of methane and ethane: activation of methane with the aid of radicals generated from ethane. Reaction Chemistry and Engineering, 2020, 5, 145-153.	3.7	19
11	Theoretical Study on the C–H Activation of Methane by Liquid Metal Indium: Catalytic Activity of Small Indium Clusters. Journal of Physical Chemistry A, 2019, 123, 8907-8912.	2.5	16
12	Upgrading of Ethanol to 1,1â€Ðiethoxyethane by Protonâ€Exchange Membrane Electrolysis. ChemSusChem, 2021, 14, 4431-4438.	6.8	16
13	Preparation of Mixed Oxide Nanotubes by Precursor-accumulation on Carbon Nanofiber Templates. Chemistry Letters, 2007, 36, 258-259.	1.3	15
14	Catalytic Mechanism of Liquid-Metal Indium for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons. ACS Omega, 2020, 5, 28158-28167.	3.5	15
15	Electrochemical Reduction of CO ₂ to CO by a Coâ€N Electrocatalyst and PEM Reactor at Ambient Conditions. ChemistrySelect, 2016, 1, 5533-5537.	1.5	14
16	Selective Electrohydrogenation of Toluene to Methylcyclohexane Using Carbon-Supported Non-Platinum Electrocatalysts in the Hydrogen Storage System. ChemistrySelect, 2017, 2, 1939-1943.	1.5	13
17	Metamorphosis-like Transformation during Activation of In/SiO ₂ Catalyst for Non-oxidative Coupling of Methane: <i>In Situ</i> X-ray Absorption Fine Structure Analysis. Chemistry Letters, 2019, 48, 1145-1147.	1.3	13
18	The Active Center of Co–N–C Electrocatalysts for the Selective Reduction of CO ₂ to CO Using a Nafion-H Electrolyte in the Gas Phase. ACS Omega, 2020, 5, 19453-19463.	3.5	11

HITOSHI OGIHARA

#	Article	IF	CITATIONS
19	Electrocatalytic Reduction of CO ₂ to CO and CH ₄ by Co–N–C Catalyst and Ni co-catalyst with PEM Reactor. ISIJ International, 2019, 59, 623-627.	1.4	10
20	Electrocatalytic Activity of Co-4,4′dimethyl-2,2′-bipyridine Supported on Ketjenblack for Reduction of CO2 to CO Using PEM Reactor. Electrocatalysis, 2018, 9, 220-225.	3.0	9
21	Methane conversion on cobalt-added liquid-metal indium catalysts. New Journal of Chemistry, 2020, 44, 17198-17202.	2.8	9
22	Decomposition and coupling of methane over Pd–Au/Al2O3 catalysts to form COx-free hydrogen and C2 hydrocarbons. International Journal of Hydrogen Energy, 2020, 45, 33612-33622.	7.1	8
23	One-Step Synthesis of Highly Active NiFe Electrocatalysts for the Oxygen Evolution Reaction. Langmuir, 2022, 38, 5525-5531.	3.5	8
24	Direct Dehydrogenative Conversion of Methane to Hydrogen, Nanocarbons, Ethane, and Ethylene on Pd/SiO ₂ Catalysts. Chemistry Letters, 2020, 49, 236-239.	1.3	7
25	Effects of Carbon Supports on Ru Electrocatalysis for the Electrohydrogenation of Toluene to Methylcyclohexane. Electrocatalysis, 2018, 9, 204-211.	3.0	6
26	CoN ₄ C _{<i>x</i>} Electrocatalyst for CO ₂ Reduction to CO by the Solid Polymer Electrolyte Electrolysis. Energy & Fuels, 2022, 36, 2300-2304.	5.1	6
27	Coating of Silica Nanolayers on Carbon Nanofibers via the Precursor Accumulation Method. Langmuir, 2020, 36, 2829-2836.	3.5	4
28	Precursor accumulation on nanocarbons for the synthesis of LaCoO ₃ nanoparticles as electrocatalysts for oxygen evolution reaction. RSC Advances, 2021, 11, 20313-20321.	3.6	4
29	Facile synthesis of nanostructured perovskites by precursor accumulation on nanocarbons. RSC Advances, 2022, 12, 6186-6191.	3.6	3
30	αâ€Iminocarboxamideâ€Ni Complex Immobilized on Acidâ€Treated Montmorillonite as Catalyst for Ethylene Polymerization. Macromolecular Reaction Engineering, 2019, 13, 1900013.	1.5	1
31	Polyethylene Blend Prepared by Ethylene or Ethylene/1-Hexene Polymerization Using Ni(II) and Fe(III) Complexes Immobilized into Fluorotetrasilicic Mica Interlayer as Catalyst. Kobunshi Ronbunshu, 2018, 75, 557-563.	0.2	0
32	Simple solution route to synthesize NiFe oxide/nanocarbon composite catalysts for the oxygen evolution reaction. New Journal of Chemistry, 0, , .	2.8	0