Julia Mirza Rosca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479280/publications.pdf

Version: 2024-02-01

		567281	315739
51	1,445	15	38
papers	citations	h-index	g-index
51	51	51	1199
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta. Materials, 2022, 15, 476.	2.9	30
2	Mechanical Properties and Corrosion Behavior of Thermally Treated Ti-6Al-7Nb Dental Alloy. Materials, 2022, 15, 3813.	2.9	5
3	Ti–Ta dental alloys and a way to improve gingival aesthethic in contact with the implant. Materials Chemistry and Physics, 2022, 287, 126343.	4.0	4
4	Electrochemical characterization of some cobalt base alloys in Ringer solution. Materials Chemistry and Physics, 2021, 260, 124164.	4.0	21
5	Comparative EIS study of titanium-based materials in high corrosive environments. International Journal of Surface Science and Engineering, 2021, 15, 152.	0.4	12
6	Comparative EIS study of titanium-based materials in high corrosive environments. International Journal of Surface Science and Engineering, 2021, 15, 152.	0.4	O
7	Past Advances and Future Perspective of Ti-Ta Alloys. Global Journal of Engineering Sciences, 2021, 7, .	0.2	3
8	Comparative EIS Study of AlxCoCrFeNi Alloys in Ringer's Solution for Medical Instruments. Metals, 2021, 11, 928.	2.3	23
9	Static Testing and Fatigue Behavior of Three High-Entropy Alloys. Microscopy and Microanalysis, 2021, 27, 3270-3271.	0.4	1
10	Biocompatibility of New High-Entropy Alloys with Non-Cytotoxic Elements. Microscopy and Microanalysis, 2021, 27, 1772-1774.	0.4	5
11	Effect of Heat Treatment on the Microstructure and Corrosión Resistance of AlCoCrFeNi High-Entropy Alloy. Microscopy and Microanalysis, 2021, 27, 3372-3374.	0.4	2
12	Microstructure and Adjustment in Tensile Strength of Al _{0.8} CoCrFeNi Fibers. Microscopy and Microanalysis, 2021, 27, 3386-3388.	0.4	1
13	Osseo-integration Improvement of Additive Manufactured Dental Alloys. Microscopy and Microanalysis, 2021, 27, 2388-2391.	0.4	1
14	Study of Biocompatibility, Mechanical Properties and Microstructural Analysis af Ag-Pd Alloy. Microscopy and Microanalysis, 2021, 27, 550-552.	0.4	1
15	Corrosion behavior in Ringer solution of several commercially used metal alloys. Anti-Corrosion Methods and Materials, 2021, 68, 324-330.	1.5	9
16	Analysis and Comparison of the Corrosive Behavior of Nickel-Based and Cobalt-Based Dental Alloys. Materials, 2021, 14, 4949.	2.9	4
17	New Titanium Alloys, Promising Materials for Medical Devices. Materials, 2021, 14, 5934.	2.9	33
18	Effects of nickel content on the microstructure, microhardness and corrosion behavior of high-entropy AlCoCrFeNix alloys. Scientific Reports, 2020, 10, 21119.	3.3	40

#	Article	IF	CITATIONS
19	AlCoCrFeNi High Entropy Alloys as Possible Nuclear Materials. Microscopy and Microanalysis, 2020, 26, 406-407.	0.4	7
20	Analysis of Bone-Implant Interface with Osseoinduction Treatment. Microscopy and Microanalysis, 2020, 26, 304-305.	0.4	1
21	Functional Bioglass—Biopolymer Double Nanostructure for Natural Antimicrobial Drug Extracts Delivery. Nanomaterials, 2020, 10, 385.	4.1	15
22	Pulsed Laser Cladding of NiCrBSiFeC Hardcoatings Using Single-Walled Carbon Nanotube Additives. Journal of Nanomaterials, 2019, 2019, 1-12.	2.7	3
23	Effects of the chemical composition on the microstructural characteristics of Ti-Nb-Ta-Zr alloys. IOP Conference Series: Materials Science and Engineering, 2019, 572, 012022.	0.6	7
24	Laser cladding: from experimental research to industrial applications. Materials Today: Proceedings, 2019, 19, 1059-1065.	1.8	9
25	Solar radiation synthesis of functional carbonaceous materials using Al 2 O 3 /TiO 2 -Cu-HA doped catalyst. Applied Surface Science, 2018, 438, 33-40.	6.1	4
26	Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corrosion Science, 2012, 65, 431-440.	6.6	113
27	Corrosion behaviour in physiological fluids of surface films formed on titanium alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 527-533.	1.5	15
28	In Vitro Behavior and Design of a New Type Implant with Nanostructured Surface. Materials Research Society Symposia Proceedings, 2011, 1316, 1.	0.1	0
29	Behavior of Two Titanium Alloys in Simulated Body Fluid. Materials Research Society Symposia Proceedings, 2011, 1355, 1.	0.1	0
30	In Vivo Studies of a Nanostructured Titanium Alloy Knee Plate and Pin. Materials Research Society Symposia Proceedings, 2011, 1349, 152301.	0.1	0
31	Corrosion resistance improvement of titanium base alloys. Quimica Nova, 2010, 33, 1892-1896.	0.3	27
32	Effect of thermo-mechanical processing on the corrosion resistance of Ti6Al4V alloys in biofluids. Corrosion Science, 2009, 51, 2885-2896.	6.6	91
33	ELECTROCHEMICAL CHARACTERISTICS OF TI6AL7NB ALLOY IN RINGER'S SOLUTION. Environmental Engineering and Management Journal, 2009, 8, 29-36.	0.6	3
34	ELECTROCHEMICAL CHARACTERIZATION OF SOME DENTAL MATERIALS IN ACCELERATED ENVIRONMENTAL TESTING. Environmental Engineering and Management Journal, 2009, 8, 397-407.	0.6	2
35	COMPARATIVE CORROSION STUDY OF NON-PRECIOUS Ni/Cr-BASED SOFT ALLOYS IN VIEW OF DENTAL APPLICATIONS. Environmental Engineering and Management Journal, 2008, 7, 41-49.	0.6	4
36	Electrochemical Determination of the Corrosion Resistance of Ag-Pd Dental Alloys. Revista De Chimie (discontinued), 2008, 59, .	0.4	2

#	Article	IF	CITATIONS
37	Electrochemical characteristics of titanium based biomaterials in artificial saliva. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 848-856.	1.5	51
38	EIS DIAGNOSIS OF SOME DENTAL ALLOYS IN ARTIFICIAL SALIVA. Environmental Engineering and Management Journal, 2007, 6, 313-317.	0.6	7
39	The pigment influence on the anticorrosive performance of some alkyd films. Materials Chemistry and Physics, 2006, 100, 296-303.	4.0	30
40	Characterisation of anodic films formed on titanium and its alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 692-696.	1.5	4
41	CORROSION BEHAVIOR OF SOME TITANIUM BASE ALLOYS IN ACID SOLUTIONS. Materials and Manufacturing Processes, 2005, 20, 35-45.	4.7	12
42	Technical and functional properties of some biocompatible thin films. Materials Chemistry and Physics, 2004, 86, 38-43.	4.0	4
43	Corrosion susceptibility of implant materials Ti–5Al–4V and Ti–6Al–4Fe in artificial extra-cellular fluids. Electrochimica Acta, 2004, 49, 2113-2121.	5.2	119
44	Comparative EIS study of a paste electrode containing zinc powder in neutral and near neutral solutions. Journal of Solid State Electrochemistry, 2002, 6, 119-125.	2.5	8
45	EIS study of Ti and its alloys in biological media. Journal of Electroanalytical Chemistry, 2002, 526, 53-62.	3.8	141
46	Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry, 1999, 471, 109-115.	3.8	458
47	Determination of the adhesion properties of an alkyd pigmented coating by electrochemical impedance spectroscopy. Journal of Adhesion Science and Technology, 1999, 13, 379-391.	2.6	6
48	Effect of bacterial biofilm on 316 SS corrosion in natural seawater by eis. Corrosion Science, 1998, 40, 2141-2154.	6.6	101
49	The Effect of Laser Shock Processing on Corrosion Resistance of Stainless Steel AISI 316L. Solid State Phenomena, 0, 216, 210-215.	0.3	2
50	The Effect of Mo and Al on the Corrosion Behavior of Titanium and Some of its Alloys for Biomedical Applications. Solid State Phenomena, 0, 216, 11-16.	0.3	0
51	Effect of Al on Corrosion Behavior in 3.5%NaCl Solution of Al _x CoCrFeNi High Entropy Alloys. International Journal of Engineering Research in Africa, 0, 53, 20-30.	0.7	4