Yongzhong Bian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7478331/publications.pdf Version: 2024-02-01

YONCZHONC RIAN

#	Article	IF	CITATIONS
1	Stem cells from human exfoliated deciduous teeth affect mitochondria and reverse cognitive decline in a senescence-accelerated mouse prone 8 model. Cytotherapy, 2022, 24, 59-71.	0.7	6
2	Perspectives on Ligand Properties of N-Heterocyclic Carbenes in Iron Porphyrin Complexes. Inorganic Chemistry, 2022, 61, 847-856.	4.0	3
3	Covalent organic frameworks based on tetraphenyl- <i>p</i> -phenylenediamine and metalloporphyrin for electrochemical conversion of CO ₂ to CO. Inorganic Chemistry Frontiers, 2022, 9, 3217-3223.	6.0	11
4	Porphyrin-Based Metal–Organic Frameworks for Efficient Photocatalytic H ₂ Production under Visible-Light Irradiation. Inorganic Chemistry, 2021, 60, 3988-3995.	4.0	49
5	Rational Modification of Two-Dimensional Donor–Acceptor Covalent Organic Frameworks for Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Interfaces, 2021, 13, 27041-27048.	8.0	80
6	Donor–acceptor covalent organic framework/g-C ₃ N ₄ hybrids for efficient visible light photocatalytic H ₂ production. Catalysis Science and Technology, 2021, 11, 2616-2621.	4.1	20
7	A phthalocyanine-porphyrin triad for ratiometric fluorescent detection of Lead(II) ions. Dyes and Pigments, 2020, 173, 107941.	3.7	16
8	Multipolar Porphyrinâ€Triazatruxene Arrays for Twoâ€Photon Fluorescence Cell Imaging. Chemistry - A European Journal, 2020, 26, 13842-13848.	3.3	11
9	A porphyrin-pyranine dyad for ratiometric fluorescent sensing of intracellular pH. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112524.	3.9	6
10	Intermolecular Chirality Modulation of Binaphthalene-Bridged Bisporphyrins With Chiral Diamines. Frontiers in Chemistry, 2020, 8, 611257.	3.6	0
11	Ferromagnetic coupling between 4f- and delocalized π-radical spins in mixed (phthalocyaninato)(porphyrinato) rare earth double-decker SMMs. Inorganic Chemistry Frontiers, 2019, 6, 2142-2147.	6.0	11
12	Manganese(III) Porphyrin-Based Magnetic Materials. Topics in Current Chemistry, 2019, 377, 18.	5.8	12
13	An AceDAN–porphyrin(Zn) dyad for fluorescence imaging and photodynamic therapy <i>via</i> two-photon excited FRET. Inorganic Chemistry Frontiers, 2018, 5, 3061-3066.	6.0	9
14	Two-Photon Excited FRET Dyads for Lysosome-Targeted Imaging and Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 11537-11542.	4.0	42
15	Lysosome-targeting ratiometric fluorescent pH probes based on long-wavelength BODIPY. Journal of Materials Chemistry B, 2018, 6, 4422-4426.	5.8	47
16	Binaphthol-strapped chiral bis (porphyrinato) cerium double-decker complexes. Inorganic Chemistry Communication, 2017, 81, 18-21.	3.9	2
17	Intramolecular chirality induction and intermolecular chirality modulation in BINOL bridged bisporphyrin hosts. Dyes and Pigments, 2017, 137, 608-614.	3.7	13
18	Ratiometric Fluorescent Detection of Pb ²⁺ by FRET-Based Phthalocyanine-Porphyrin Dyads. Inorganic Chemistry, 2017, 56, 14533-14539.	4.0	61

Yongzhong Bian

#	Article	IF	CITATIONS
19	Chiral Discrimination of Diamines by a Binaphthalene-Bridged Porphyrin Dimer. Inorganic Chemistry, 2017, 56, 8223-8231.	4.0	26
20	Mixed (phthalocyaninato)(tetranaphthylporphyrinato) terbium triple-decker complex: Synthesis, crystal structure and magnetic properties. Inorganic Chemistry Communication, 2016, 73, 30-33.	3.9	4
21	Controllable incoherent growth of a surface toward gold nanocrystals with regular multi-bumps. CrystEngComm, 2016, 18, 4713-4719.	2.6	Ο
22	Single-molecule magnetism of tetrapyrrole lanthanide compounds with sandwich multiple-decker structures. Coordination Chemistry Reviews, 2016, 306, 195-216.	18.8	172
23	Chiral dinaphthylporphyrin with C2 symmetry: synthesis, resolution, and enantio-discrimination by single-crystal X-ray diffraction analysis. Tetrahedron Letters, 2014, 55, 3377-3380.	1.4	2
24	C60-modified mixed (phthalocyaninato)(porphyrinato) yttrium(III) double-decker complex: Synthesis, characterization, and photophysical properties. Dyes and Pigments, 2014, 102, 257-262.	3.7	1
25	Synergistic Coupling of Fluorescent "Turn-Off―with Spectral Overlap Modulated FRET for Ratiometric Ag ⁺ Sensor. Inorganic Chemistry, 2014, 53, 12186-12190.	4.0	28
26	Stereochemistry and Solid-State Structure of an Intrinsically ChiralMeso-Patterned Porphyrin: Case Study by NMR and Single-Crystal X-ray Diffraction Analysis. Journal of Organic Chemistry, 2013, 78, 9949-9955.	3.2	16
27	Density Functional Theory Study on Subtriazaporphyrin Derivatives: Dipolar/Octupolar Contribution to the Second-Order Nonlinear Optical Activity. Journal of Physical Chemistry A, 2012, 116, 10249-10256.	2.5	51
28	Third-order nonlinear optical properties of sandwich-type mixed (phthalocyaninato)(porphyrinato) europium double- and triple-decker complexes. Dyes and Pigments, 2012, 95, 627-631.	3.7	38
29	Ferrocene-Decorated (Phthalocyaninato)(Porphyrinato) Double- and Triple-Decker Rare Earth Complexes: Synthesis, Structure, and Electrochemical Properties. Inorganic Chemistry, 2012, 51, 5651-5659.	4.0	25
30	Cyanide-bridged complexes based on dinuclear Cu(II)-M(II) [M = Pb and Cu] building blocks: Synthesis, crystal structures and magnetic properties. Science China Chemistry, 2012, 55, 978-986.	8.2	3
31	Zn(II) and Cd(II) metal–organic frameworks (MOFs) constructed from a symmetric triangular semirigid multicarboxylate ligand: Synthesis, structures and luminescent properties. Solid State Sciences, 2012, 14, 317-323.	3.2	15
32	Substituent effects on the structure–property relationship of unsymmetrical methyloxy and methoxycarbonyl phthalocyanines: DFT and TDDFT theoretical studies. Journal of Molecular Graphics and Modelling, 2012, 35, 57-65.	2.4	15
33	The first solution-processable n-type phthalocyaninato copper semiconductor: tuning the semiconducting nature via peripheral electron-withdrawing octyloxycarbonyl substituents. Journal of Materials Chemistry, 2011, 21, 18552.	6.7	44
34	Helical nano-structures self-assembled from dimethylaminoethyloxy-containing unsymmetrical octakis-substituted phthalocyanine derivatives. Soft Matter, 2011, 7, 3417.	2.7	27
35	64 Chemistry of Sandwich Tetrapyrrole Rare Earth Complexes. Handbook of Porphyrin Science, 2011, , 249-460.	0.8	13
36	Mixed (porphyrinato)(phthalocyaninato) rare-earth(III) double-decker complexes for broadband light harvesting organic solar cells. Journal of Materials Chemistry, 2011, 21, 11131.	6.7	46

Yongzhong Bian

#	Article	IF	CITATIONS
37	2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines with good n-type semiconducting properties. Synthesis, spectroscopic, and electrochemical characteristics. Journal of Materials Chemistry, 2011, 21, 6515.	6.7	36
38	Conformational effects, molecular orbitals, and reaction activities of bis(phthalocyaninato) lanthanum double-deckers: Density functional theory calculations. Physical Chemistry Chemical Physics, 2011, 13, 13277.	2.8	48
39	Synthesis, structures and luminescent properties of Co(II) and Ni(II) metal-organic frameworks with semirigid diphthalic ligands. Solid State Sciences, 2011, 13, 1948-1953.	3.2	2
40	Density functional theory studies on the structures and electronic communication of meso-ferrocenylporphyrins: Long range orbital coupling via porphyrin core. Journal of Molecular Graphics and Modelling, 2011, 29, 717-725.	2.4	32
41	Perylene diimide-appended mixed (phthalocyaninato)(porphyrinato) europium(III) double-decker complex: Synthesis, spectroscopy and electrochemical properties. Dyes and Pigments, 2011, 91, 99-104.	3.7	11
42	The infrared spectroscopic characteristics of peripheral octa-substituted phthalocyanines with hexylsulfonyl groups. Vibrational Spectroscopy, 2011, 56, 245-249.	2.2	4
43	Charge transfer properties of phthalocyaninato zinc complexes for organic field-effect transistors: tuning semiconductor nature <i>via</i> peripheral substituents. Journal of Porphyrins and Phthalocyanines, 2011, 15, 964-972.	0.8	Ο
44	Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: A substitution effect study based on density functional theory calculations. Journal of Molecular Graphics and Modelling, 2010, 29, 470-480.	2.4	29
45	Zn(II) metal-organic frameworks (MOFs) assembled from semirigid multicarboxylate ligands: Synthesis, crystal structures, and luminescent properties. Solid State Sciences, 2010, 12, 1791-1796.	3.2	6
46	Nanoscale Hollow Spheres of an Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium Doubleâ€Đecker Complex. European Journal of Inorganic Chemistry, 2010, 2010, 753-757.	2.0	14
47	Benzo-fused low symmetry metal-free tetraazaporphyrin and phthalocyanine analogs: synthesis, spectroscopy, electrochemistry, and density functional theory calculations. Journal of Porphyrins and Phthalocyanines, 2010, 14, 421-437.	0.8	9
48	Nature of the Intense Near-IR Absorption and Unusual Broad UVâ^'Visibleâ^'NIR Spectra of Azulenocyanines: Density Functional Theory Studies. Journal of Physical Chemistry A, 2010, 114, 13411-13417.	2.5	29
49	Linkage Dependence of Intramolecular Fluorescence Quenching Process in Porphyrin-Appended Mixed (Phthalocyaninato)(Porphyrinato) Yttrium(III) Double-Decker Complexes. Journal of Physical Chemistry B, 2010, 114, 13143-13151.	2.6	21
50	Novel Pathway to Synthesize Unsymmetrical 2,3,9,10,16,17,23-heptakis(alkoxyl)-24-mono(dimethylaminoalkoxyl)phthalocyanines. Inorganic Chemistry, 2010, 49, 9005-9011.	4.0	12
51	Bis[1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] rare earth double-decker complexes: synthesis, spectroscopy, and molecular structure. Dalton Transactions, 2010, 39, 1321-1327.	3.3	26
52	Synthesis and third-order nonlinear optical properties of novel ethynyl-linked heteropentamer composed of four porphyrins and one pyrene. Journal of Porphyrins and Phthalocyanines, 2009, 13, 275-282.	0.8	13
53	Synthesis, Characterization and OFET Properties of Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium(III) Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 954-960.	2.0	34
54	Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Double-Decker Complexes with <i>C</i> ₄ Chirality: Synthesis, Resolution, and Absolute Configuration Assignment. Inorganic Chemistry, 2009, 48, 8925-8933.	4.0	34

#	Article	IF	CITATIONS
55	Optically Active Mixed Phthalocyaninato–Porphyrinato Rareâ€Earth Doubleâ€Decker Complexes: Synthesis, Spectroscopy, and Solventâ€Dependent Molecular Conformations. Chemistry - A European Journal, 2008, 14, 4667-4674.	3.3	48
56	Optically Active Mixed Phthalocyaninato-porphyrinato Rare-Earth Double-Decker Complexes: Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformation. Chemistry - A European Journal, 2008, 14, 6288-6288.	3.3	0
57	Sandwichâ€Type Heteroleptic <i>opposite</i> â€(Diazaporphyrinato)cerium Complexes: Synthesis, Spectroscopy, Structure, and Electrochemistry. European Journal of Inorganic Chemistry, 2008, 2008, 5519-5523.	2.0	21
58	Charge Transfer Properties of Bis(phthalocyaninato) Rare Earth (III) Complexes: Intrinsic Ambipolar Semiconductor for Field Effect Transistors. Journal of Physical Chemistry C, 2008, 112, 14579-14588.	3.1	39
59	H ₂ O-Involved Hydrogen Bonds in Pseudo-Double-Decker Supramolecular Structure of 1,8,15,22-Tetrasubstituted Phthalocyaninato Zinc Complex. Crystal Growth and Design, 2008, 8, 4454-4459.	3.0	15
60	Porphyrin-Appended Europium(III) Bis(phthalocyaninato) Complexes: Synthesis, Characterization, and Photophysical Properties. Chemistry - A European Journal, 2007, 13, 4169-4177.	3.3	42
61	Location of the Hole and Acid Proton in Neutral Nonprotonated and Protonated Mixed (Phthalocyaninato)(porphyrinato) Yttrium Doubleâ€Decker Complexes: Density Functional Theory Calculations. Chemistry - A European Journal, 2007, 13, 9503-9514.	3.3	40
62	Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 2612-2618.	2.0	38
63	Synthesis, Structure, and Spectroscopic and Electrochemical Properties of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes with aC4 Symmetry. Helvetica Chimica Acta, 2004, 87, 2581-2596.	1.6	44
64	Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Vibrational Spectroscopy, 2004, 34, 283-291.	2.2	53
65	Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted) Tj ETQq1 1	0.784314 4.0	l rgBT /Overlo
66	Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type phthalocyaninato and porphyrinato rare earth complexes. Part 5?Raman spectroscopic characteristics of naphthalocyanine in mixed [tetrakis(4-tert-butylphenyl)porphyrinato] (naphthalocyaninato) rare earth double-deckers. Journal of Raman Spectroscopy, 2003, 34, 306-314.	2.5	17
67	Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands. Journal of the American Chemical Society, 2003, 125, 12257-12267.	13.7	158
68	Synthesis, spectroscopic characterisation and structure of the first chiral heteroleptic bis(phthalocyaninato) rare earth complexesElectronic supplementary information (ESI) available: 1H NMR spectrum of {SmIII(Pc)[Pc(OC5H11)4]}– in CDCI3/DMSO-d6 (1ⰶ1) in the presence of a few drops of hydrazine hydrate. See http://www.rsc.org/suppdata/cc/b3/b301139a/. Chemical Communications, 2003, , 1194-1195	4.1	60
69	Structural studies of the whole series of lanthanide double-decker compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. New Journal of Chemistry, 2003, 27, 844-849.	2.8	36