
Laura Leyva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7478143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. Journal of Allergy and Clinical Immunology, 2002, 109, 155-161.	1.5	201
2	In vitro T-cell responses to beta-lactam drugs in immediate and nonimmediate allergic reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2001, 56, 611-618.	2.7	163
3	Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. Journal of Medical Genetics, 2008, 45, 362-369.	1.5	128
4	Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS ONE, 2018, 13, e0195891.	1.1	112
5	Anticonvulsant-induced toxic epidermal necrolysis: Monitoring the immunologic response. Journal of Allergy and Clinical Immunology, 2000, 105, 157-165.	1.5	94
6	IFNAR1 and IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon-beta treatment response. Journal of Neuroimmunology, 2005, 163, 165-171.	1.1	85
7	The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes and Immunity, 2010, 11, 439-445.	2.2	79
8	Subjects with allergic reactions to drugs show in vivo polarized patterns of cytokine expression depending on the chronology of the clinical reaction. Journal of Allergy and Clinical Immunology, 2000, 106, 769-776.	1.5	77
9	Controlled administration of penicillin to patients with a positive history but negative skin and specific serum IgE tests. Clinical and Experimental Allergy, 2002, 32, 270-276.	1.4	77
10	Effects of the multiple sclerosis associated â^'330 promoter polymorphism in IL2 allelic expression. Journal of Neuroimmunology, 2004, 148, 212-217.	1.1	76
11	Expression of the skin-homing receptor in peripheral blood lymphocytes from subjects with nonimmediate cutaneousallergic drug reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2000, 55, 998-1004.	2.7	67
12	IL2RA/CD25 Gene Polymorphisms: Uneven Association with Multiple Sclerosis (MS) and Type 1 Diabetes (T1D). PLoS ONE, 2009, 4, e4137.	1.1	65
13	Identification of a functional variant in the <i>KIF5A-CYP27B1-METTL1-FAM119B</i> locus associated with multiple sclerosis. Journal of Medical Genetics, 2013, 50, 25-33.	1.5	59
14	Lipidâ€specific immunoglobulin <scp>M</scp> bands in cerebrospinal fluid are associated with a reduced risk of developing progressive multifocal leukoencephalopathy during treatment with natalizumab. Annals of Neurology, 2015, 77, 447-457.	2.8	48
15	Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genetics, 2019, 15, e1008180.	1.5	46
16	Genome-Wide Association Study of Multiple Sclerosis Confirms a Novel Locus at 5p13.1. PLoS ONE, 2012, 7, e36140.	1.1	46
17	ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes and Immunity, 2012, 13, 253-257.	2.2	44
18	A functional variant that affects exon-skipping and protein expression of <i>SP140</i> as genetic mechanism predisposing to multiple sclerosis. Human Molecular Genetics, 2015, 24, 5619-5627.	1.4	43

LAURA LEYVA

#	Article	IF	CITATIONS
19	HLA class II and response to interferon-beta in multiple sclerosis. Acta Neurologica Scandinavica, 2005, 112, 391-394.	1.0	39
20	Protein tyrosine phosphatase gene (PTPN22) polymorphism in multiple sclerosis. Journal of Neurology, 2005, 252, 994-995.	1.8	38
21	The high producer variant of the Fc-receptor like-3 (FCRL3) gene is involved in protection against multiple sclerosis. Journal of Neuroimmunology, 2008, 195, 146-150.	1.1	37
22	Differences in the immunological responses in drug- and virus-induced cutaneous reactions in children. Blood Cells, Molecules, and Diseases, 2003, 30, 124-131.	0.6	36
23	Replication of top markers of a genome-wide association study in multiple sclerosis in Spain. Genes and Immunity, 2011, 12, 110-115.	2.2	36
24	Kinetics and incidence of anti-natalizumab antibodies in multiple sclerosis patients on treatment for 18 months. Multiple Sclerosis Journal, 2011, 17, 368-371.	1.4	36
25	Genome-wide significant association with seven novel multiple sclerosis risk loci. Journal of Medical Genetics, 2015, 52, 848-855.	1.5	34
26	Gene therapy with mesenchymal stem cells expressing IFNâ€ÃŸ ameliorates neuroinflammation in experimental models of multiple sclerosis. British Journal of Pharmacology, 2017, 174, 238-253.	2.7	34
27	Killer cell immunoglobulin-like receptor genes in Spanish multiple sclerosis patients. Molecular Immunology, 2011, 48, 1896-1902.	1.0	33
28	Study of binding and neutralising antibodies to interferon-? in two groups of relapsing-remitting multiple sclerosis patients. Journal of Neurology, 2001, 248, 383-388.	1.8	32
29	The T244I variant of the interleukinâ€7 receptorâ€alpha gene and multiple sclerosis. Tissue Antigens, 2008, 72, 158-161.	1.0	30
30	Predictors of Fatigue Severity in Early Systemic Sclerosis: A Prospective Longitudinal Study of the GENISOS Cohort. PLoS ONE, 2011, 6, e26061.	1.1	30
31	Human Endogenous Retrovirus HERV-Fc1 Association with Multiple Sclerosis Susceptibility: A Meta-Analysis. PLoS ONE, 2014, 9, e90182.	1.1	29
32	The efficacy of natalizumab in patients with multiple sclerosis according to level of disability: results of an observational study. Multiple Sclerosis Journal, 2011, 17, 192-197.	1.4	26
33	HLA class II alleles in patients with multiple sclerosis in the Biscay province (Basque Country, Spain). Journal of Neurology, 2009, 256, 1977-1988.	1.8	25
34	Tag-SNP analysis of the GFI1-EVI5-RPL5-FAM69 risk locus for multiple sclerosis. European Journal of Human Genetics, 2010, 18, 827-831.	1.4	25
35	Association of hypersensitivity to the nematode Anisakis simplex with HLA class II DRB1â^—1502-DQB1â^—0601 haplotype. Human Immunology, 2000, 61, 314-319.	1.2	24
36	Interferon receptor expression in multiple sclerosis patients. Journal of Neuroimmunology, 2007, 183, 225-231.	1.1	22

LAURA LEYVA

#	Article	IF	CITATIONS
37	Does the DRB1âŽ1501 allele confer more severe and faster progression in primary progressive multiple sclerosis patients?HLA in primary progressive multiple sclerosis. Journal of Neuroimmunology, 2009, 214, 101-103.	1.1	22
38	The CD4+ T-cell subset lacking expression of the CD28 costimulatory molecule is expanded and shows a higher activation state in multiple sclerosis. Journal of Neuroimmunology, 2012, 243, 1-11.	1.1	22
39	The HLA DRB1*03:01 allele is associated with NMO regardless of the NMO-IgG status in Brazilian patients from Rio de Janeiro. Journal of Neuroimmunology, 2017, 310, 1-7.	1.1	22
40	Multiple sclerosis association study with the <i>TENRâ€IL2â€IL21</i> region in a Spanish population. Tissue Antigens, 2009, 74, 244-247.	1.0	20
41	HLA alleles as biomarkers of high-titre neutralising antibodies to interferon-Î ² therapy in multiple sclerosis. Journal of Medical Genetics, 2014, 51, 395-400.	1.5	19
42	Pharmacogenomic study in patients with multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e154.	3.1	19
43	IL28B polymorphisms are not associated with the response to interferon-beta in multiple sclerosis. Journal of Neuroimmunology, 2011, 239, 101-104.	1.1	18
44	Candidate Gene Study of TRAIL and TRAIL Receptors: Association with Response to Interferon Beta Therapy in Multiple Sclerosis Patients. PLoS ONE, 2013, 8, e62540.	1.1	18
45	Global methylation correlates with clinical status in multiple sclerosis patients in the first year of IFNbeta treatment. Scientific Reports, 2017, 7, 8727.	1.6	17
46	Multiple sclerosis in Gypsies from southern Spain: prevalence, mitochondrial DNA haplogroups and HLA class II association. Tissue Antigens, 2008, 71, 426-433.	1.0	16
47	TRAIL/TRAIL Receptor System and Susceptibility to Multiple Sclerosis. PLoS ONE, 2011, 6, e21766.	1.1	16
48	Gene expression in IFNß signalling pathway differs between monocytes, CD4 and CD8 T cells from MS patients. Journal of Neuroimmunology, 2011, 230, 153-159.	1.1	15
49	Activation of the JAK-STAT Signaling Pathway after In Vitro Stimulation with IFNß in Multiple Sclerosis Patients According to the Therapeutic Response to IFNß. PLoS ONE, 2017, 12, e0170031.	1.1	15
50	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	0.8	13
51	Mesenchymal properties of SJL mice-stem cells and their efficacy as autologous therapy in a relapsing–remitting multiple sclerosis model. Stem Cell Research and Therapy, 2014, 5, 134.	2.4	12
52	A new risk variant for multiple sclerosis at the immunoglobulin heavy chain locus associates with intrathecal IgG, IgM index and oligoclonal bands. Multiple Sclerosis Journal, 2015, 21, 1104-1111.	1.4	12
53	Cell-based product classification procedure: What can be done differently to improve decisions on borderline products?. Cytotherapy, 2016, 18, 809-815.	0.3	12
54	Decreased soluble IFN-β receptor (sIFNAR2) in multiple sclerosis patients: A potential serum diagnostic biomarker. Multiple Sclerosis Journal, 2017, 23, 937-945.	1.4	12

LAURA LEYVA

#	Article	IF	CITATIONS
55	Neutralizing antibodies against IFN beta in patients with multiple sclerosis: A comparative study of two cytopathic effect tests (CPE) for their detection. Journal of Immunological Methods, 2009, 351, 41-45.	0.6	11
56	Early development of anti-natalizumab antibodies in MS patients. Journal of Neurology, 2013, 260, 2343-2347.	1.8	11
57	Treatment of faecal incontinence with autologous expanded mesenchymal stem cells: results of a pilot study. Colorectal Disease, 2021, 23, 698-709.	0.7	11
58	DRB1*03:01 Haplotypes: Differential Contribution to Multiple Sclerosis Risk and Specific Association with the Presence of Intrathecal IgM Bands. PLoS ONE, 2012, 7, e31018.	1.1	11
59	Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis. European Journal of Human Genetics, 2010, 18, 618-620.	1.4	9
60	Cross-reactivity of antibodies against interferon beta in multiple sclerosis patients and interference of the JAK-STAT signaling pathway. Scientific Reports, 2017, 7, 16585.	1.6	7
61	Memory to the hapten in non-immediate cutaneous allergic reactions to betalactams resides in a lymphocyte subpopulation expressing both CD45RO and CLA markers. Blood Cells, Molecules, and Diseases, 2003, 31, 75-79.	0.6	6
62	Development and validation of an ELISA for quantification of soluble IFN-β receptor: assessment in multiple sclerosis. Bioanalysis, 2015, 7, 2869-2880.	0.6	6
63	TRAIL and TRAIL receptors splice variants during long-term interferon β treatment of patients with multiple sclerosis: evaluation as biomarkers for therapeutic response. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2014-309932.	0.9	6
64	Preferential Expression of the Skin–Homing Receptor CLA in Peripheral T Lymphocytes from Patients with Drug–Allergic Reactions. International Archives of Allergy and Immunology, 1999, 118, 355-357.	0.9	5
65	Recombinant soluble IFN receptor (sIFNAR2) exhibits intrinsic therapeutic efficacy in a murine model of Multiple Sclerosis. Neuropharmacology, 2016, 110, 480-492.	2.0	5
66	A New Risk Variant for Multiple Sclerosis at 11q23.3 Locus Is Associated with Expansion of CXCR5+ Circulating Regulatory T Cells. Journal of Clinical Medicine, 2020, 9, 625.	1.0	5
67	Soluble Receptor Isoform of IFN-Beta (sIFNAR2) in Multiple Sclerosis Patients and Their Association With the Clinical Response to IFN-Beta Treatment. Frontiers in Immunology, 2021, 12, 778204.	2.2	5
68	Characterization of specific IgE response in vitro against protein and drug allergens using atopic and normal donors. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 193-200.	2.7	4
69	Antiviral, Immunomodulatory and Antiproliferative Activities of Recombinant Soluble IFNAR2 without IFN-ß Mediation. Journal of Clinical Medicine, 2020, 9, 959.	1.0	4
70	Identification of the genetic mechanism that associates <i>L3MBTL3</i> to multiple sclerosis. Human Molecular Genetics, 2022, 31, 2155-2163.	1.4	4
71	Killer-Cell Immunoglobulin-Like Receptor Expression on Lymphocyte Subsets in Multiple Sclerosis Patients Treated with Interferon-β: Evaluation as Biomarkers for Clinical Response. CNS Drugs, 2014, 28, 559-570.	2.7	2