List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7477610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers and Operations Research, 2010, 37, 1439-1454.	2.4	355
2	A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. Journal of the Operational Research Society, 2004, 55, 1243-1255.	2.1	229
3	A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem. International Journal of Production Research, 2015, 53, 1111-1123.	4.9	170
4	An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 2003, 31, 311-317.	3.6	165
5	A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational Research, 2017, 257, 707-721.	3.5	155
6	Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem. International Journal of Production Research, 2003, 41, 121-148.	4.9	134
7	New hard benchmark for flowshop scheduling problems minimising makespan. European Journal of Operational Research, 2015, 240, 666-677.	3.5	125
8	A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems. European Journal of Operational Research, 2014, 235, 1-16.	3.5	123
9	The distributed permutation flow shop to minimise the total flowtime. Computers and Industrial Engineering, 2018, 118, 464-477.	3.4	122
10	Approximative procedures for no-wait job shop scheduling. Operations Research Letters, 2003, 31, 308-318.	0.5	121
11	The CONWIP production control system: Review and research issues. Production Planning and Control, 2003, 14, 255-265.	5.8	121
12	On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem. Computers and Operations Research, 2014, 45, 60-67.	2.4	119
13	Comparison of heuristics for flowtime minimisation in permutation flowshops. Computers and Operations Research, 2005, 32, 1237-1254.	2.4	107
14	Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation. European Journal of Operational Research, 2002, 141, 559-569.	3.5	106
15	Closed-loop supply chains: What reverse logistics factors influence performance?. International Journal of Production Economics, 2016, 175, 35-49.	5.1	96
16	On the Bullwhip Avoidance Phase: The Synchronised Supply Chain. European Journal of Operational Research, 2012, 221, 49-63.	3.5	90
17	Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures. European Journal of Operational Research, 2019, 273, 401-417.	3.5	86
18	Metrics for bullwhip effect analysis. Journal of the Operational Research Society, 2013, 64, 1-16.	2.1	81

#	Article	IF	CITATIONS
19	On bullwhip-limiting strategies in divergent supply chain networks. Computers and Industrial Engineering, 2014, 73, 85-95.	3.4	70
20	NEH-based heuristics for the permutation flowshop scheduling problem to minimise total tardiness. Computers and Operations Research, 2015, 60, 27-36.	2.4	70
21	Architecture of manufacturing scheduling systems: Literature review and an integrated proposal. European Journal of Operational Research, 2010, 205, 237-246.	3.5	66
22	Total tardiness minimization in permutation flow shops: a simple approach based on a variable greedy algorithm. International Journal of Production Research, 2008, 46, 6479-6498.	4.9	63
23	Integrated operating room planning and scheduling problem with assistant surgeon dependent surgery durations. Computers and Industrial Engineering, 2015, 82, 8-20.	3.4	60
24	The effect of Inventory Record Inaccuracy in Information Exchange Supply Chains. European Journal of Operational Research, 2015, 243, 120-129.	3.5	59
25	A genetic algorithm for scheduling open shops with sequence-dependent setup times. Computers and Operations Research, 2020, 113, 104793.	2.4	58
26	Manufacturing Scheduling Systems. , 2014, , .		56
27	Evaluating the performance for makespan minimisation in no-wait flowshop sequencing. Journal of Materials Processing Technology, 2008, 197, 1-9.	3.1	54
28	Efficient heuristics for the hybrid flow shop scheduling problem with missing operations. Computers and Industrial Engineering, 2018, 115, 88-99.	3.4	53
29	Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimise total tardiness. Expert Systems With Applications, 2018, 94, 58-69.	4.4	53
30	A simheuristic algorithm to set up starting times in the stochastic parallel flowshop problem. Simulation Modelling Practice and Theory, 2018, 86, 55-71.	2.2	53
31	Using real-time information to reschedule jobs in a flowshop with variable processing times. Computers and Industrial Engineering, 2019, 129, 113-125.	3.4	52
32	Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective. Computers and Operations Research, 2019, 109, 77-88.	2.4	52
33	An enhanced timetabling procedure for the no-wait job shop problem: a complete local search approach. Computers and Operations Research, 2006, 33, 1200-1213.	2.4	50
34	Serial vs. divergent supply chain networks: a comparative analysis of the bullwhip effect. International Journal of Production Research, 2014, 52, 2194-2210.	4.9	49
35	The impact of the supply chain structure on bullwhip effect. Applied Mathematical Modelling, 2015, 39, 7309-7325.	2.2	49
36	Information sharing in supply chains with heterogeneous retailers. Omega, 2018, 79, 116-132.	3.6	49

#	Article	IF	CITATIONS
37	A multi-objective iterated greedy search for flowshop scheduling with makespan and flowtime criteria. OR Spectrum, 2008, 30, 787-804.	2.1	48
38	Token-based pull production control systems: an introductory overview. Journal of Intelligent Manufacturing, 2012, 23, 5-22.	4.4	48
39	An efficient heuristic for total flowtime minimisation in no-wait flowshops. International Journal of Advanced Manufacturing Technology, 2010, 46, 1049-1057.	1.5	46
40	Dynamic card controlling in a Conwip system. International Journal of Production Economics, 2006, 99, 102-116.	5.1	45
41	Inventory policies and information sharing in multi-echelon supply chains. Production Planning and Control, 2011, 22, 649-659.	5.8	45
42	A Decision Support System for Operating Room scheduling. Computers and Industrial Engineering, 2015, 88, 430-443.	3.4	45
43	On the dynamics of closed-loop supply chains with capacity constraints. Computers and Industrial Engineering, 2019, 128, 91-103.	3.4	43
44	A new set of high-performing heuristics to minimise flowtime in permutation flowshops. Computers and Operations Research, 2015, 53, 68-80.	2.4	42
45	Available-to-promise (ATP) systems: a classification and framework for analysis. International Journal of Production Research, 2010, 48, 3079-3103.	4.9	40
46	New approximate algorithms for the customer order scheduling problem with total completion time objective. Computers and Operations Research, 2017, 78, 181-192.	2.4	40
47	On the dynamics of closed-loop supply chains under remanufacturing lead time variability. Omega, 2020, 97, 102106.	3.6	39
48	Quantifying the Bullwhip Effect in closed-loop supply chains: The interplay of information transparencies, return rates, and lead times. International Journal of Production Economics, 2020, 230, 107798.	5.1	38
49	On heuristic solutions for the stochastic flowshop scheduling problem. European Journal of Operational Research, 2015, 246, 413-420.	3.5	37
50	New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics. Expert Systems With Applications, 2018, 114, 345-356.	4.4	37
51	The 2-stage assembly flowshop scheduling problem with total completion time: Efficient constructive heuristic and metaheuristic. Computers and Operations Research, 2017, 88, 237-246.	2.4	36
52	Guidelines for the deployment and implementation of manufacturing scheduling systems. International Journal of Production Research, 2012, 50, 1799-1812.	4.9	35
53	OVAP: A strategy to implement partial information sharing among supply chain retailers. Transportation Research, Part E: Logistics and Transportation Review, 2018, 110, 122-136.	3.7	35
54	A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimise total flowtime. Expert Systems With Applications, 2016, 61, 290-301.	4.4	34

#	Article	IF	CITATIONS
55	A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness. International Journal of Production Economics, 2006, 99, 28-40.	5.1	33
56	Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times. International Journal of Production Economics, 2018, 204, 264-277.	5.1	33
57	Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling. European Journal of Operational Research, 2020, 282, 858-872.	3.5	33
58	Inventory record inaccuracy – The impact of structural complexity and lead time variability. Omega, 2017, 68, 123-138.	3.6	32
59	Order scheduling with tardiness objective: Improved approximate solutions. European Journal of Operational Research, 2018, 266, 840-850.	3.5	31
60	Constructive heuristics for the unrelated parallel machines scheduling problem with machine eligibility and setup times. Computers and Industrial Engineering, 2019, 131, 131-145.	3.4	31
61	Solving the hybrid flow shop scheduling problem with limited human resource constraint. Computers and Industrial Engineering, 2020, 146, 106545.	3.4	31
62	Single machine scheduling with periodic machine availability. Computers and Industrial Engineering, 2018, 123, 180-188.	3.4	30
63	On returns and network configuration in supply chain dynamics. Transportation Research, Part E: Logistics and Transportation Review, 2015, 73, 152-167.	3.7	29
64	A stochastic approach for solving the operating room scheduling problem. Flexible Services and Manufacturing Journal, 2018, 30, 224-251.	1.9	29
65	Input control and dispatching rules in a dynamic CONWIP flow-shop. International Journal of Production Research, 2000, 38, 4589-4598.	4.9	28
66	A best-of-breed iterated greedy for the permutation flowshop scheduling problem with makespan objective. Computers and Operations Research, 2019, 112, 104767.	2.4	28
67	An IT-enabled supply chain model: a simulation study. International Journal of Systems Science, 2014, 45, 2327-2341.	3.7	27
68	New heuristics for planning operating rooms. Computers and Industrial Engineering, 2015, 90, 429-443.	3.4	27
69	A beam-search-based constructive heuristic for the PFSP to minimise total flowtime. Computers and Operations Research, 2017, 81, 167-177.	2.4	27
70	Remanufacturing configuration in complex supply chains. Omega, 2021, 101, 102268.	3.6	27
71	Efficient non-population-based algorithms for the permutation flowshop scheduling problem with makespan minimisation subject to a maximum tardiness. Computers and Operations Research, 2015, 64, 86-96.	2.4	22
72	Scheduling permutation flowshops with initial availability constraint: Analysis of solutions and constructive heuristics. Computers and Operations Research, 2009, 36, 2866-2876.	2.4	20

#	Article	IF	CITATIONS
73	A review and classification of computer-based manufacturing scheduling tools. Computers and Industrial Engineering, 2016, 99, 229-249.	3.4	20
74	Proportional order-up-to policies for closed-loop supply chains: the dynamic effects of inventory controllers. International Journal of Production Research, 2021, 59, 3323-3337.	4.9	20
75	Sequencing CONWIP flow-shops: Analysis and heuristics. International Journal of Production Research, 2001, 39, 2735-2749.	4.9	19
76	New efficient constructive heuristics for the two-stage multi-machine assembly scheduling problem. Computers and Industrial Engineering, 2020, 140, 106223.	3.4	19
77	Special issue on pull strategies in manufacturing systems and supply chains: recent advances. Journal of Intelligent Manufacturing, 2012, 23, 1-3.	4.4	18
78	Design of a testbed for hybrid flow shop scheduling with identical machines. Computers and Industrial Engineering, 2020, 141, 106288.	3.4	18
79	On the link between inventory and responsiveness in multi-product supply chains. International Journal of Systems Science, 2008, 39, 677-688.	3.7	16
80	The pull evolution: from Kanban to customised token-based systems. Production Planning and Control, 2009, 20, 276-287.	5.8	16
81	Setting a common due date in a constrained flowshop: A variable neighbourhood search approach. Computers and Operations Research, 2010, 37, 1740-1748.	2.4	16
82	A multi-objective comparison of dispatching rules in a drum–buffer–rope production control system. International Journal of Computer Integrated Manufacturing, 2010, 23, 155-167.	2.9	16
83	Exploring a two-product unreliable manufacturing system as a capacity constraint for a two-echelon supply chain dynamic problem. International Journal of Production Research, 2022, 60, 1105-1133.	4.9	16
84	XPDRL project: Improving the project documentation quality in the Spanish architectural, engineering and construction sector. Automation in Construction, 2010, 19, 270-282.	4.8	15
85	A decision management tool: modelling the order fulfilment process by multi-agent systems. International Journal of Management and Decision Making, 2013, 12, 240.	0.1	15
86	Relationship between common objective functions, idle time and waiting time in permutation flow shop scheduling. Computers and Operations Research, 2020, 121, 104965.	2.4	15
87	The implications of batching in the bullwhip effect and customer service of closed-loop supply chains. International Journal of Production Economics, 2022, 244, 108379.	5.1	15
88	A methodology for the design and operation of pullâ€based supply chains. Journal of Manufacturing Technology Management, 2013, 24, 307-330.	3.3	14
89	An adaptive branch and bound approach for transforming job shops into flow shops. Computers and Industrial Engineering, 2007, 52, 1-10.	3.4	13
90	Integrated Project Scheduling and Staff Assignment with Controllable Processing Times. Scientific World Journal, The, 2014, 2014, 1-16.	0.8	13

#	Article	IF	CITATIONS
91	Exploring the benefits of scheduling with advanced and real-time information integration in Industry 4.0: A computational study. Journal of Industrial Information Integration, 2022, 27, 100281.	4.3	13
92	Analysing the impact of production control policies on the dynamics of a two-product supply chain with capacity constraints. International Journal of Production Research, 2023, 61, 1913-1937.	4.9	13
93	Efficient constructive and composite heuristics for the Permutation Flowshop to minimise total earliness and tardiness. Computers and Operations Research, 2016, 75, 38-48.	2.4	12
94	A fitness-based weighting mechanism for multicriteria flowshop scheduling using genetic algorithms. International Journal of Advanced Manufacturing Technology, 2009, 43, 939-948.	1.5	11
95	A response surface methodology for parameter setting in a dynamic Conwip production control system. International Journal of Manufacturing Technology and Management, 2011, 23, 16.	0.1	11
96	Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation. European Journal of Operational Research, 2022, 299, 869-882.	3.5	11
97	New efficient heuristics for scheduling open shops with makespan minimization. Computers and Operations Research, 2022, 142, 105744.	2.4	11
98	On transforming job-shops into flow-shops. Production Planning and Control, 2002, 13, 166-174.	5.8	9
99	Controllable Processing Times in Project and Production Management: Analysing the Trade-Off between Processing Times and the Amount of Resources. Mathematical Problems in Engineering, 2015, 2015, 1-19.	0.6	9
100	A critical-path based iterated local search for the green permutation flowshop problem. Computers and Industrial Engineering, 2022, 169, 108276.	3.4	9
101	SCOPE: A Multi-Agent system tool for supply chain network analysis. , 2015, , .		8
102	Efficient heuristic approaches to transform job shops into flow shops. IIE Transactions, 2005, 37, 441-451.	2.1	7
103	Reduction of permutation flowshop problems to single machine problems using machine dominance relations. Computers and Operations Research, 2017, 77, 96-110.	2.4	7
104	Turbulence in Market Demand on Supply Chain Networks. International Journal of Simulation Modelling, 2016, 15, 450-459.	0.6	7
105	Assessing scheduling policies in a permutation flowshop with common due dates. International Journal of Production Research, 2015, 53, 5742-5754.	4.9	6
106	Available-To-Promise systems in the semiconductor industry: A review of contributions and a preliminary experiment. , 2016, , .		6
107	Demand Sharing Inaccuracies in Supply Chains: A Simulation Study. Complexity, 2018, 2018, 1-13.	0.9	6
108	Evolving Trends in Supply Chain Management: Complexity, New Technologies, and Innovative Methodological Approaches. Complexity, 2018, 2018, 1-3.	0.9	6

#	Article	IF	CITATIONS
109	Hybrid flow shop with multiple servers: A computational evaluation and efficient divide-and-conquer heuristics. Expert Systems With Applications, 2020, 153, 113462.	4.4	5
110	Matheuristics for the flowshop scheduling problem with controllable processing times and limited resource consumption to minimize total tardiness. Computers and Operations Research, 2022, , 105880.	2.4	5
111	A Simulation Optimization Approach for Reactive ConWIP Systems. , 2013, , .		4
112	The value of real-time data in stochastic flowshop scheduling: A simulation study for makespan. , 2017, , ,		4
113	Single machine interfering jobs problem with flowtime objective. Journal of Intelligent Manufacturing, 2018, 29, 953-972.	4.4	4
114	Information sharing in decentralised supply chains with partial collaboration. Flexible Services and Manufacturing Journal, 2022, 34, 263-292.	1.9	4
115	Modelling Supply Chain Dynamics. , 2022, , .		4
116	A note on "A DSS approach to managing customer enquiries for SMEs at the customer level enquiry stage― International Journal of Production Economics, 2007, 109, 254-255.	5.1	3
117	A proposal for a hybrid meta-strategy for combinatorial optimization problems. Journal of Heuristics, 2008, 14, 375-390.	1.1	3
118	A Decision-Making Tool for a Regional Network of Clinical Laboratories. Interfaces, 2013, 43, 360-372.	1.6	3
119	Minimization of total completion time on a batch processing machine with arbitrary release dates: an effectual teaching–learning based optimization approach. Production Engineering, 2019, 13, 557-566.	1.1	3
120	Building Resilience in Closed-Loop Supply Chains through Information-Sharing Mechanisms. Sustainability, 2019, 11, 6746.	1.6	3
121	Tools for Collaborative Business Process T Modeling. , 2008, , 1643-1652.		3
122	Optimization Customized Token-Based Production Control Systems Using Cross-Entropy. , 2007, , 123-131.		2
123	On the evaluation of arborescent supply chains with inventory errors. , 2015, , .		2
124	Combining simulation with metaheuristics in distributed scheduling problems with stochastic processing times. , 2016, , .		2
125	Linking Scheduling Criteria to Shop Floor Performance in Permutation Flowshops. Algorithms, 2019, 12, 263.	1.2	2
126	Handling variability for robust order promising and fulfilment. , 2009, , .		1

126 Handling variability for robust order promising and fulfilment. , 2009, , .

8

#	Article	IF	CITATIONS
127	Insights on Partial Information Sharing in Supply Chain dynamics. , 2015, , .		1
128	Constructive heuristics for the minimization of core waiting time in permutation flow shop problems. , 2019, , .		1
129	Overview of Scheduling Tools. , 2014, , 291-317.		1
130	Tools for Collaborative Business Process T Modeling. , 2010, , 636-648.		1
131	Constructive and composite heuristics for the 2-stage assembly scheduling problem with periodic maintenance and makespan objective. Expert Systems With Applications, 2022, 206, 117824.	4.4	1
132	THE ROLE OF INVENTORY IN ENABLING SUPPLY CHAIN RESPONSIVENESS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 309-314.	0.4	0
133	Guidelines for Developing Scheduling Systems. , 2014, , 353-369.		0
134	Boundary lines between permutation flowshop problems and single machine problems. , 2015, , .		0
135	Constructive heuristics comparison in hybrid flow shop scheduling environments with missing operations. , 2015, , .		0
136	Simulation results of optimal solution for a multiechelon inventory system. , 2017, , .		0
137	Closed-Loop Supply Chain. , 2022, , 151-166.		0
138	The Effect of the Quality of Information in SCD. , 2022, , 85-121.		0
139	Modelling Complex SC Structures. , 2022, , 167-183.		0
140	Scheduling Constraints. , 2014, , 75-99.		0