John M Melack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7477605/publications.pdf

Version: 2024-02-01

225 papers 21,775 citations

71 h-index 139 g-index

230 all docs

230 docs citations

times ranked

230

20976 citing authors

#	Article	IF	CITATIONS
1	Spatial and seasonal variability of chlorophyll <i>a</i> in different-sized lakes across eastern China. Inland Waters, 2022, 12, 205-214.	1.1	4
2	Reducing adverse impacts of Amazon hydropower expansion. Science, 2022, 375, 753-760.	6.0	60
3	Spatiotemporal Variations of Evapotranspiration in Amazonia Using the Wavelet Phase Difference Analysis. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
4	Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, $2022,10,.$	1.5	4
5	How much inundation occurs in the Amazon River basin?. Remote Sensing of Environment, 2022, 278, 113099.	4.6	18
6	A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
7	Turbulence in a small boreal lake: Consequences for air–water gas exchange. Limnology and Oceanography, 2021, 66, 827-854.	1.6	27
8	Limnological perspectives on conservation of floodplain lakes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1041-1055.	0.9	13
9	Amazon floodplain hydrology and implications for aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1029-1040.	0.9	26
10	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	5.4	388
11	Terrestrial Organic Matter Inputs to Nearshore Marine Sediment Under Prolonged Drought Followed by Significant Rainfall as Indicated by Lignin. Estuaries and Coasts, 2021, 44, 2159.	1.0	2
12	Large Seasonal and Habitat Differences in Methane Ebullition on the Amazon Floodplain. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005911.	1.3	7
13	Multiple climate change-driven tipping points for coastal systems. Scientific Reports, 2021, 11, 15560.	1.6	35
14	Effects of Wildfires and Ash Leaching on Stream Chemistry in the Santa Ynez Mountains of Southern California. Water (Switzerland), 2021, 13, 2402.	1.2	7
15	Diel Variability of CO ₂ Emissions From Northern Lakes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006246.	1.3	14
16	Amazon Hydrology From Space: Scientific Advances and Future Challenges. Reviews of Geophysics, 2021, 59, e2020RG000728.	9.0	53
17	Factors influencing urea use by giant kelp (Macrocystis pyrifera , Phaeophyceae). Limnology and Oceanography, 2021, 66, 1190-1200.	1.6	5
18	Enhanced Turbulence in the Upper Mixed Layer Under Light Winds and Heating: Implications for Gas Fluxes. Journal of Geophysical Research: Oceans, 2021, 126, .	1.0	12

#	Article	IF	CITATIONS
19	Chapter 6: Biogeochemical Cycles in the Amazon. , 2021, , .		7
20	Carbon dioxide supersaturation in highâ€elevation oligotrophic lakes and reservoirs in the Sierra Nevada, California. Limnology and Oceanography, 2020, 65, 612-626.	1.6	5
21	A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sensing of Environment, 2020, 248, 111974.	4.6	184
22	Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 2020, 10, 20514.	1.6	56
23	Future climate impacts on the hydrology of headwater streams in the Amazon River Basin: Implications for migratory goliath catfishes. Hydrological Processes, 2020, 34, 5402-5416.	1.1	8
24	Sensitivity of nitrate concentrationâ€discharge patterns to soil nitrate distribution and drainage properties in the vertical dimension. Hydrological Processes, 2020, 34, 2477-2493.	1.1	12
25	Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 2020, 148, 129-151.	1.7	27
26	Spatial Variations of Subsurface Chlorophyll Maxima During Thermal Stratification in a Large, Deep Subtropical Reservoir. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005480.	1.3	16
27	Carbon Dioxide Fluxes to the Atmosphere From Waters Within Flooded Forests in the Amazon Basin. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005293.	1.3	20
28	Turbulence and Gas Transfer Velocities in Sheltered Flooded Forests of the Amazon Basin. Geophysical Research Letters, 2019, 46, 9628-9636.	1.5	18
29	Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nature Communications, 2019, 10, 4281.	5.8	126
30	Detecting Land Degradation in Eastern China Grasslands with Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) and GIMMS NDVI3g Data. Remote Sensing, 2019, 11, 1014.	1.8	25
31	Climate warming response of mountain lakes affected by variations in snow. Limnology and Oceanography Letters, 2019, 4, 9-17.	1.6	45
32	Seasonal and spatial variability of CO2 in aquatic environments of the central lowland Amazon basin. Biogeochemistry, 2019, 143, 133-149.	1.7	11
33	Seasonal and Interannual Patterns and Controls of Hydrological Fluxes in an Amazon Floodplain Lake With a Surfaceâ€Subsurface Process Model. Water Resources Research, 2019, 55, 3056-3075.	1.7	30
34	Propagation of future climate conditions into hydrologic response from coastal southern California watersheds. Climatic Change, 2019, 153, 199-218.	1.7	16
35	Contribution of macroalgal wrack consumers to dissolved inorganic nitrogen concentrations in intertidal pore waters of sandy beaches. Estuarine, Coastal and Shelf Science, 2019, 219, 363-371.	0.9	14
36	A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean and Coastal Management, 2019, 182, 104921.	2.0	30

#	Article	IF	CITATIONS
37	Longâ€ŧerm perspectives in aquatic research. Limnology and Oceanography, 2019, 64, S2.	1.6	21
38	High rates of methane oxidation in an Amazon floodplain lake. Biogeochemistry, 2018, 137, 351-365.	1.7	32
39	A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environmental Modelling and Software, 2018, 102, 274-291.	1.9	93
40	Concentrationâ€Discharge Responses to Storm Events in Coastal California Watersheds. Water Resources Research, 2018, 54, 407-424.	1.7	54
41	Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake. Science of the Total Environment, 2018, 630, 1381-1393.	3.9	36
42	Recent increase of river–floodplain suspended sediment exchange in a reach of the lower Amazon River. Earth Surface Processes and Landforms, 2018, 43, 322-332.	1.2	29
43	Relationships Among Nutrient and Sediment Fluxes, Hydrological Variability, Fire, and Land Cover in Coastal California Catchments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2568-2589.	1.3	15
44	Urea as a source of nitrogen to giant kelp (<i>Macrocystis pyrifera</i>). Limnology and Oceanography Letters, 2018, 3, 365-373.	1.6	30
45	Retention of Nitrogen Following Wildfire in a Chaparral Ecosystem. Ecosystems, 2018, 21, 1608-1622.	1.6	16
46	Effects of Climate Variability on Snowmelt and Implications for Organic Matter in a Highâ€Elevation Lake. Water Resources Research, 2018, 54, 4563-4578.	1.7	44
47	Regional and seasonal variability in planktonic photosynthesis and planktonic community respiration in Amazon floodplain lakes. Hydrobiologia, 2017, 800, 187-206.	1.0	18
48	Interannual Variation in Hydrologic Budgets in an Amazonian Watershed with a Coupled Subsurface–Land Surface Process Model. Journal of Hydrometeorology, 2017, 18, 2597-2617.	0.7	17
49	The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE, 2017, 12, e0182254.	1.1	153
50	Diffusive methane fluxes from Negro, Solimões and Madeira rivers and fringing lakes in the Amazon basin. Limnology and Oceanography, 2016, 61, S221.	1.6	37
51	Aquatic Ecosystems. Ecological Studies, 2016, , 119-148.	0.4	25
52	The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics. Water Resources Research, 2016, 52, 880-902.	1.7	34
53	Downstream emissions of CH ₄ and CO ₂ from hydroelectric reservoirs (TucuruÃ; Samuel, and Curuá-Una) in the Amazon basin. Inland Waters, 2016, 6, 295-302.	1.1	24
54	Carbon dioxide outgassing from Amazonian aquatic ecosystems in the Negro River basin. Biogeochemistry, 2016, 129, 77-91.	1.7	22

#	Article	lF	CITATIONS
55	Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 2016, 136, 555-570.	1.7	147
56	Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 2015, 42, 10,773.	1.5	767
57	The importance of forest cover for fish richness and abundance on the Amazon floodplain. Hydrobiologia, 2015, 750, 245-255.	1.0	44
58	Does flood rhythm drive ecosystem responses in tropical riverscapes?. Ecology, 2015, 96, 684-692.	1.5	77
59	Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands, 2015, 35, 745-756.	0.7	195
60	Sediment yields from small, steep coastal watersheds of California. Journal of Hydrology: Regional Studies, 2015, 4, 516-534.	1.0	28
61	Temporal Evolution and Variability of Dissolved Inorganic Nitrogen in Beach Pore Water Revealed Using Radon Residence Times. Environmental Science & Environmental Science & 2014, 48, 14211-14218.	4.6	26
62	20th Century Atmospheric Deposition and Acidification Trends in Lakes of the Sierra Nevada, California, USA. Environmental Science & Environmental Sci	4.6	13
63	Assessing Nitrogen-Saturation in a Seasonally Dry Chaparral Watershed: Limitations of Traditional Indicators of N-Saturation. Ecosystems, 2014, 17, 1286-1305.	1.6	55
64	Phosphorus in sediments of high-elevation lakes in the Sierra Nevada (California): implications for internal phosphorus loading. Aquatic Sciences, 2014, 76, 511-525.	0.6	10
65	Biological and chemical responses in a temporarily open/closed estuary to variable freshwater inputs. Hydrobiologia, 2014, 734, 97-113.	1.0	13
66	Modeling Methane Emissions from Amazon Floodplain Ecosystems. Wetlands, 2014, 34, 501-511.	0.7	14
67	Plant-mediated transport and isotopic composition of methane from shallow tropical wetlands. Inland Waters, 2014, 4, 369-376.	1.1	8
68	Flooding dynamics on the lower Amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resources Research, 2014, 50, 619-634.	1.7	90
69	Flooding dynamics on the lower Amazon floodplain: 2. Seasonal and interannual hydrological variability. Water Resources Research, 2014, 50, 635-649.	1.7	63
70	A multisensor, multitemporal approach for monitoring herbaceous vegetation growth in the Amazon floodplain. , $2013, \ldots$		2
71	Fire as a disturbance in mediterranean climate streams. Hydrobiologia, 2013, 719, 353-382.	1.0	103
72	The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia, 2013, 719, 383-425.	1.0	142

#	Article	IF	CITATIONS
73	Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain. Global Change Biology, 2013, 19, 3379-3389.	4.2	34
74	Initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California chaparral watersheds. Hydrological Processes, 2013, 27, 3842-3851.	1.1	47
75	Modeling Nutrient Export From Coastal California Watersheds. Journal of the American Water Resources Association, 2013, 49, 793-809.	1.0	5
76	Multiple Sources and Forms of Nitrogen Sustain Year-Round Kelp Growth on the Inner Continental Shelf of the Santa Barbara Channel. Oceanography, 2013, 26, 114-123.	0.5	46
77	The Effect of an Extreme Rain Event on the Biogeochemistry and Ecosystem Metabolism of an Oligotrophic High-Elevation Lake. Arctic, Antarctic, and Alpine Research, 2012, 44, 222-231.	0.4	75
78	Land use control of stream nitrate concentrations in mountainous coastal California watersheds. Journal of Geophysical Research, 2012, 117, .	3.3	28
79	Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 2011, 9, 53-60.	1.9	927
80	CO2emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Journal of Geophysical Research, 2011, 116, .	3.3	160
81	Seasonal and spatial variability of CO ₂ emission from a large floodplain lake in the lower Amazon. Journal of Geophysical Research, 2011, 116, .	3.3	45
82	An integrated conceptual framework for longâ€ŧerm social–ecological research. Frontiers in Ecology and the Environment, 2011, 9, 351-357.	1.9	462
83	Linking diel patterns in community respiration to bacterioplankton in an oligotrophic highâ€elevation lake. Limnology and Oceanography, 2011, 56, 540-550.	1.6	50
84	Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil. Biogeochemistry, 2011, 105, 171-183.	1.7	61
85	Spatial and Temporal Variability in the Ecosystem Metabolism of a High-elevation Lake: Integrating Benthic and Pelagic Habitats. Ecosystems, 2011, 14, 1123-1140.	1.6	42
86	Improving biogeochemical knowledge through technological innovation. Frontiers in Ecology and the Environment, 2011, 9, 37-43.	1.9	4
87	Riverine carbon dioxide release. Nature Geoscience, 2011, 4, 821-822.	5.4	18
88	Depthâ€integrated estimates of ecosystem metabolism in a highâ€elevation lake (Emerald Lake, Sierra) Tj ETQqı	0 0 0 rgBT	/Oχgrlock 10
89	Geospatial analysis of spatiotemporal patterns of pH, total suspended sediment and chlorophyll-a on the Amazon floodplain. Limnology, 2010, 11, 155-166.	0.8	35
90	Longitudinal and seasonal variation of stream N uptake in an urbanizing watershed: effect of organic matter, stream size, transient storage and debris dams. Biogeochemistry, 2010, 98, 45-62.	1.7	21

#	Article	IF	Citations
91	Longitudinal assessment of the effect of concentration on stream N uptake rates in an urbanizing watershed. Biogeochemistry, 2010, 98, 63-74.	1.7	16
92	Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: A remote sensing approach. Remote Sensing of Environment, 2010, 114, 1998-2010.	4.6	76
93	Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment, 2010, 114, 2448-2456.	4.6	119
94	Remote Sensing of the Distribution and Extent of Wetlands in the Amazon Basin. Ecological Studies, 2010, , 43-59.	0.4	131
95	Adding an empirical factor to better represent the rewetting pulse mechanism in a soil biogeochemical model. Geoderma, 2010, 159, 440-451.	2.3	25
96	Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon Floodplain. Aquatic Botany, 2010, 92, 161-167.	0.8	20
97	Seasonal variation in nitrogen uptake and turnover in two high-elevation soils: mineralization responses are site-dependent. Biogeochemistry, 2009, 93, 253-270.	1.7	40
98	Annual net primary production of macrophytes in the eastern Amazon floodplain. Wetlands, 2009, 29, 747-758.	0.7	36
99	Water and chemical budgets at the catchment scale including nutrient exports from intact forests and disturbed landscapes. Geophysical Monograph Series, 2009, , 505-524.	0.1	9
100	Ecophysiology of forest and savanna vegetation. Geophysical Monograph Series, 2009, , 463-484.	0.1	25
101	Contrasting the influences of stream inputs and landscape position on bacterioplankton community structure and dissolved organic matter composition in highâ€elevation lake chains. Limnology and Oceanography, 2009, 54, 1292-1305.	1.6	56
102	Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 2009, 54, 2298-2314.	1.6	1,977
103	Floodplain ecosystem processes. Geophysical Monograph Series, 2009, , 525-541.	0.1	54
104	Remote sensing of aquatic vegetation: theory and applications. Environmental Monitoring and Assessment, 2008, 140, 131-145.	1.3	245
105	Impacts of Climate Variability and Land Use Alterations on Frequency Distributions of Terrestrial Runoff Loading to Coastal Waters in Southern California $\sup 1 < \sup 1 $. Journal of the American Water Resources Association, 2008, 44, 62-74.	1.0	28
106	High rates of net primary production and turnover of floating grasses on the Amazon floodplain: implications for aquatic respiration and regional CO ₂ flux. Global Change Biology, 2008, 14, 369-381.	4.2	49
107	Biogeochemical legacy of prescribed fire in a giant sequoia $\hat{a}\in \hat{b}$ mixed conifer forest: A $16\hat{a}\in \hat{b}$ watershed balances. Journal of Geophysical Research, 2008, 113, .	3.3	16
108	CO ₂ emissions from saline lakes: A global estimate of a surprisingly large flux. Journal of Geophysical Research, 2008, 113, .	3.3	137

#	Article	IF	Citations
109	Mechanisms for nutrient delivery to the inner shelf: Observations from the Santa Barbara Channel. Limnology and Oceanography, 2007, 52, 1748-1766.	1.6	96
110	Spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters, 2007, 34, .	1.5	151
111	Modeling largeâ€scale inundation of Amazonian seasonally flooded wetlands. Geophysical Research Letters, 2007, 34, .	1.5	177
112	Mineralization responses at near-zero temperatures in three alpine soils. Biogeochemistry, 2007, 84, 233-245.	1.7	37
113	Characterizing patterns of plant distribution in a southern California salt marsh using remotely sensed topographic and hyperspectral data and local tidal fluctuations. Remote Sensing of Environment, 2007, 110, 226-239.	4.6	67
114	The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 2006, 51, 2388-2397.	1.6	1,426
115	Decadal-scale Dynamics of Water, Carbon and Nitrogen in a California Chaparral Ecosystem: DAYCENT Modeling Results. Biogeochemistry, 2006, 77, 217-245.	1.7	41
116	Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images. Limnology, 2006, 7, 153-161.	0.8	69
117	Santa Barbara Coastal Long Term Ecological Research (LTER): Nutrient Concentrations in Coastal Streams and Variations with Land Use in the Carpinteria Valley, California. , 2005, , 811.		0
118	Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biology and Biochemistry, 2005, 37, 2195-2204.	4.2	305
119	Understanding and modeling basin hydrology: interpreting the hydrogeological signature. Hydrological Processes, 2005, 19, 1333-1353.	1.1	38
120	Steps towards modeling nutrient export in coastal Californian streams with a Mediterranean climate. Agricultural Water Management, 2005, 77, 144-158.	2.4	17
121	Diffusion modeling of recessional flow on central Amazonian floodplains. Geophysical Research Letters, 2005, 32, .	1.5	36
122	Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, 2004, 10, 530-544.	4.2	212
123	Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos(Bolivia) and the Llanos del Orinoco(Venezuela and Colombia). Hydrological Processes, 2004, 18, 2103-2116.	1.1	148
124	Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia. Journal of Geophysical Research, 2004, 109, .	3.3	54
125	Multidecadal hydrochemical response of a Sierra Nevada watershed: sensitivity to weathering rate and changes in deposition. Journal of Hydrology, 2004, 285, 272-285.	2.3	19
126	Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry, 2003, 64, 1-24.	1.7	100

#	Article	IF	CITATIONS
127	Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment, 2003, 87, 404-428.	4.6	496
128	IMPACTS OF CALIFORNIA'S CLIMATIC REGIMES AND COASTAL LAND USE CHANGE ON STREAMFLOW CHARACTERISTICS. Journal of the American Water Resources Association, 2003, 39, 1419-1433.	1.0	80
129	Evidence for nutrient enrichment of highâ€elevation lakes in the Sierra Nevada, California. Limnology and Oceanography, 2003, 48, 1885-1892.	1.6	119
130	Geocoded digital videography for validation of land cover mapping in the Amazon basin. International Journal of Remote Sensing, 2002, 23, 1527-1555.	1.3	39
131	Comparison of inundation patterns among major South American floodplains. Journal of Geophysical Research, 2002, 107, LBA 5-1.	3.3	190
132	Landscape indicators of human impacts to riverine systems. , 2002, 64, 118-128.		325
133	Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 2002, 416, 617-620.	13.7	911
134	Title is missing!. Biogeochemistry, 2002, 57, 341-374.	1.7	62
135	Processes regulating the solute concentrations of snowmelt runoff in two subalpine catchments of the Sierra Nevada, California. Water Resources Research, 2001, 37, 1993-2008.	1.7	18
136	Nitrogen mass balances and abiotic controls on N retention and yield in high-elevation catchments of the Sierra Nevada, California, United States. Water Resources Research, 2001, 37, 1445-1461.	1.7	70
137	Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophysical Research Letters, 2001, 28, 2671-2674.	1.5	112
138	Spatial Scaling of Hydrological and Biogeochemical Aspects of High-Altitude Catchments in the Sierra Nevada, California, U.S.A Arctic, Antarctic, and Alpine Research, 2001, 33, 391-396.	0.4	5
139	Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology, 2001, 21, 535-556.	1.5	311
140	Airborne remote sensing of chlorophyll distributions in Mono Lake, California. Hydrobiologia, 2001, 466, 31-38.	1.0	8
141	Biogeochemistry of Amazon Floodplain Lakes and Associated Wetlands. , 2001, , .		69
142	Spatial Scaling of Hydrological and Biogeochemical Aspects of High-Altitude Catchments in the Sierra Nevada, California, U.S.A Arctic, Antarctic, and Alpine Research, 2001, 33, 391.	0.4	8
143	Interferometric radar measurements of water level changes on the Amazon flood plain. Nature, 2000, 404, 174-177.	13.7	277
144	Title is missing!. Biogeochemistry, 2000, 51, 71-90.	1.7	74

#	Article	IF	CITATIONS
145	Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia, 2000, 122, 380-388.	0.9	360
146	The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: Current conditions and projected changes. Biogeochemistry, 1999, 46, 109-148.	1.7	209
147	Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry, 1999, 46, 149-162.	1.7	143
148	Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry, 1999, 46, 149-162.	1.7	64
149	Composition and deposition of throughfall in a flooded forest archipelago. Biogeochemistry, 1999, 45, 169-195.	1.7	31
150	Episodic lake acidification in the Sierra Nevada, California. Water Resources Research, 1999, 35, 2793-2804.	1.7	14
151	The onset of meromixis during restoration of Mono Lake, California: Unintended consequences of reducing water diversions. Limnology and Oceanography, 1998, 43, 706-711.	1.6	52
152	Climatic and Hydrologic Changes in the Tien Shan, Central Asia. Journal of Climate, 1997, 10, 1393-1404.	1.2	319
153	An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnology and Oceanography, 1997, 42, 257-272.	1.6	132
154	Snow Distribution and Melt in Central Tien Shan, Susamir Valley. Arctic and Alpine Research, 1997, 29, 403.	1.3	8
155	Freshwater Ecosystems: Revitalizing Educational Programs in Limnology. Eos, 1997, 78, 552-557.	0.1	7
156	Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif. Journal of Glaciology, 1997, 43, 503-512.	1.1	0
157	Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif. Journal of Glaciology, 1997, 43, 503-512.	1.1	36
158	Title is missing!. Biogeochemistry, 1997, 37, 111-144.	1.7	39
159	Solute export from forested and partially deforested chatchments in the central Amazon. Biogeochemistry, 1997, 38, 67-102.	1.7	129
160	Title is missing!. Biogeochemistry, 1997, 38, 303-335.	1.7	95
161	Title is missing!. Biogeochemistry, 1997, 39, 225-253.	1.7	43
162	The use of imaging radars for ecological applicationsâ€"A review. Remote Sensing of Environment, 1997, 59, 141-156.	4.6	390

#	Article	IF	Citations
163	EFFECTS OF CLIMATE CHANGE ON INLAND WATERS OF THE PACIFIC COASTAL MOUNTAINS AND WESTERN GREAT BASIN OF NORTH AMERICA. Hydrological Processes, 1997, 11, 971-992.	1.1	63
164	Precipitation, melt and runoff in the northern Tien Shan. Journal of Hydrology, 1996, 186, 229-251.	2.3	86
165	Organic matter accumulation in sediments of hypersaline Mono Lake during a period of changing salinity. Limnology and Oceanography, 1996, 41, 1539-1544.	1.6	44
166	Sensitivity of vertical mixing in a large saline lake to variations in runoff. Limnology and Oceanography, 1996, 41, 955-965.	1.6	38
167	Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern) Tj ETQq $1\ 1\ 0.78^2$	4314 rgBT	Oyerlock 10
168	Simulation of the effect of methane bubble plumes on vertical mixing in Mono Lake. Aquatic Sciences, 1996, 58, 210-223.	0.6	8
169	Mass balance of major solutes in a rainforest catchment in the Central Amazon: Implications for nutrient budgets in tropical rainforests. Biogeochemistry, 1996, 32, 115.	1.7	35
170	Fluxes and transformations of nitrogen in a high-elevation catchment, Sierra Nevada. Biogeochemistry, 1995, 28, 1-31.	1.7	98
171	CLIMATE, SNOW COVER, GLACIERS, AND RUNOFF IN THE TIEN SHAN, CENTRAL ASIA. Journal of the American Water Resources Association, 1995, 31, 1113-1129.	1.0	131
172	Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling. Remote Sensing of Environment, 1995, 54, 324-332.	4.6	167
173	Zooplankton cohort analysis using systems identification techniques. Journal of Plankton Research, 1995, 17, 2093-2115.	0.8	17
174	Effects of different natural regimes of temperature and food on survival, growth and development of Artemia monica Verrill. Journal of Plankton Research, 1995, 17, 2117-2130.	0.8	10
175	Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon river in Brazil from a remote sensing perspective. Geomorphology, 1995, 13, 215-232.	1.1	206
176	Controls on the major ion chemistry of the \tilde{A} \propto \tilde{A} \sim \tilde{A} mqi River, Tian Shan, People's Republic of China. Journal of Hydrology, 1995, 172, 209-229.	2.3	18
177	Flooding Hydrology and Mixture Dynamics of Lake Water Derived from Multiple Sources in an Amazon Floodplain Lake. Water Resources Research, 1995, 31, 329-345.	1.7	124
178	Vertical and Horizontal Transport in Lakes: Linking Littoral, Benthic, and Pelagic Habitats. Journal of the North American Benthological Society, 1995, 14, 599-615.	3.0	113
179	Remote sensing of lakes and floodplains in the Amazon basin. International Journal of Remote Sensing, 1994, 10, 127-142.	1.1	29
180	The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter. Remote Sensing of Environment, 1994, 49, 25-31.	4.6	45

#	Article	IF	CITATIONS
181	Determination of inundation area in the Amazon River floodplain using the SMMR 37 GHz polarization difference. Remote Sensing of Environment, 1994, 48, 70-76.	4.6	118
182	Effects of single and repeated experimental acid pulses on invertebrates in a high altitude Sierra Nevada stream. Freshwater Biology, 1994, 32, 161-183.	1.2	26
183	Geochemical and hydrologic controls on the composition of surface water in a highâ€elevation basin. Sierra Nevada, California. Limnology and Oceanography, 1993, 38, 775-797.	1.6	92
184	Algal photosynthetic activity and its response to meromixis in hypersaline Mono Lake, California. Limnology and Oceanography, 1993, 38, 818-837.	1.6	76
185	Consequences of riverine flooding for seston and theperiphyton of floating meadows in an Amazon floodplain lake. Limnology and Oceanography, 1993, 38, 1500-1520.	1.6	68
186	Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnology and Oceanography, 1993, 38, 1020-1039.	1.6	71
187	Meromixis in hypersaline Mono Lake, California. 1. Stratification and vertical mixing during the onset, persistence, and breakdown of meromixis. Limnology and Oceanography, 1993, 38, 1008-1019.	1.6	93
188	Sources and spatial variation of the chemical composition of snow in the Tien Shan, China. Annals of Glaciology, 1992, 16, 25-32.	2.8	63
189	Inundation area and morphometry of lakes on the Amazon River floodplain, Brazil. Archiv FÃ $\frac{1}{4}$ r Hydrobiologie, 1992, 123, 385-400.	1.1	94
190	Precipitation chemistry in and ionic loading to an Alpine Basin, Sierra Nevada. Water Resources Research, 1991, 27, 1563-1574.	1.7	74
191	Solute chemistry of snowmelt and runoff in an Alpine Basin, Sierra Nevada. Water Resources Research, 1991, 27, 1575-1588.	1.7	174
192	The Deposition, Composition, and Potential Sources of Major Ionic Solutes in Rain of the Central Amazon Basin. Water Resources Research, 1991, 27, 2953-2977.	1.7	66
193	Atmospheric deposition and solute export in giant sequoia? mixed conifer watersheds in the Sierra Nevada, California. Biogeochemistry, 1991, 12, 207.	1.7	11
194	Responses of zooplankton and zoobenthos to experimental acidification in a high-elevation lake (Sierra Nevada, California, U.S.A.). Freshwater Biology, 1990, 23, 571-586.	1.2	33
195	Floating meadow epiphyton: biological and chemical features of epiphytic material in an Amazon floodplain lake. Freshwater Biology, 1989, 22, 479-494.	1.2	15
196	Effects of Spatial and Temporal Variation in Snow Melt on Nitrate Ion and Sulfate Ion Pulses in Melt Waters Within an Alpine Basin. Annals of Glaciology, 1989, 13, 285-288.	2.8	10
197	Elemental Dynamics in Streams. Journal of the North American Benthological Society, 1988, 7, 410-432.	3.0	178
198	Tropospheric methane from an Amazonian floodplain lake. Journal of Geophysical Research, 1988, 93, 1564-1570.	3.3	142

#	Article	lF	CITATIONS
199	Methane flux from the central Amazonian floodplain. Journal of Geophysical Research, 1988, 93, 1571-1582.	3.3	200
200	Saline Lakes. Ecology, 1987, 68, 755-755.	1.5	1
201	Large Rivers. Ecology, 1987, 68, 756-757.	1.5	O
202	Spatial and temporal distribution patterns of three trophic levels in a saline lake. Journal of Plankton Research, 1986, 8, 1051-1064.	0.8	19
203	Ammonium and phosphate regenerationby the zooplankton of an Amazon floodplain lake. Freshwater Biology, 1986, 16, 821-830.	1.2	12
204	The Hubbard Brook Ecosystem: An Ecosystem Approach to Aquatic Ecology Science, 1986, 232, 1031-1032.	6.0	2
205	Life as a Phytoplankter. Ecology, 1985, 66, 1392-1392.	1.5	0
206	Major Ion Chemistry and Sensitivity to Acid Precipitation of Sierra Nevada Lakes. Water Resources Research, 1985, 21, 27-32.	1.7	75
207	Transport of carbon, nitrogen, phosphorus, and major solutes in the Gambia River, West Africa1. Limnology and Oceanography, 1984, 29, 816-830.	1.6	95
208	Responses of phytoplankton to experimental nutrient enrichment in an Amazon floodplain lake1. Limnology and Oceanography, 1984, 29, 972-984.	1.6	69
209	VERTICAL DISTRIBUTION OF ZOOPLANKTON AND PHYSICO-CHEMICAL CONDITIONS DURING A 24-HOUR PERIOD IN AN AMAZON FLOODPLAIN LAKE - LAGO CALADO, BRAZIL. Acta Amazonica, 1983, 13, 475-487.	0.3	18
210	Meromixis in an equatorial African soda lake1. Limnology and Oceanography, 1982, 27, 595-609.	1.6	72
211	Phytoplankton Ecology, Ecology, 1982, 63, 1189-1190.	1.5	0
212	Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia, 1982, 52, 321-326.	0.9	67
213	Photosynthetic activity and respiration in an equatorial African soda lake. Freshwater Biology, 1982, 12, 381-400.	1.2	32
214	Lakes Rivers and Catchments. Ecology, 1981, 62, 504-505.	1.5	0
215	A Guide to Limnological Methods. Ecology, 1981, 62, 505-505.	1.5	0
216	Transport of organic carbon in the world's rivers. Tellus, 1981, 33, 172-187.	0.4	295

#	Article	IF	CITATIONS
217	Major ion chemistry in a tropical African lake basin. Freshwater Biology, 1981, 11, 309-333.	1.2	91
218	Primary Production and Fish Yields in Chinese Ponds and Lakes. Transactions of the American Fisheries Society, 1981, 110, 346-350.	0.6	60
219	Fallout Plutonium in an Alkaline, Saline Lake. Science, 1980, 207, 1071-1073.	6.0	28
220	Photosynthesis and growth of <i>Spirulina platensis</i> (Cyanophyta) in an equatorial lake (Lake) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
221	Temporal variability of phytoplankton in tropical lakes. Oecologia, 1979, 44, 1-7.	0.9	141
222	Photosynthetic rates in four tropical African fresh waters. Freshwater Biology, 1979, 9, 555-571.	1.2	66
223	Primary Productivity and Fish Yields in Tropical Lakes. Transactions of the American Fisheries Society, 1976, 105, 575-580.	0.6	166
224	Photosynthetic rates of phytoplankton in East African alkaline, saline lakes1. Limnology and Oceanography, 1974, 19, 743-755.	1.6	216
225	Primary Northupite Deposition in Lake Mahega, Uganda?. Nature: Physical Science, 1972, 238, 123-123.	0.8	5