Gary J Nabel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7477406/publications.pdf

Version: 2024-02-01

101	19,639	64 h-index	103
papers	citations		g-index
109	109	109	15130
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 2010, 329, 856-861.	6.0	1,600
2	Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRCO1. Science, 2010, 329, 811-817.	6.0	1,050
3	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	13.7	794
4	Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing. Science, 2011, 333, 1593-1602.	6.0	788
5	HIV vaccine design and the neutralizing antibody problem. Nature Immunology, 2004, 5, 233-236.	7.0	721
6	HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-κB-like factor. Nature, 1988, 333, 776-778.	13.7	693
7	Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499, 102-106.	13.7	682
8	Activation of HIV gene expression during monocyte differentiation by induction of NF-kB. Nature, 1989, 339, 70-73.	13.7	635
9	Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine, 2015, 21, 1065-1070.	15.2	567
10	Cloning of an NF-κB subunit which stimulates HIV transcription in synergy with p65. Nature, 1991, 352, 733-736.	13.7	446
11	A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nature Medicine, 2010, 16, 334-338.	15.2	403
12	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	1.5	393
13	Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature, 1993, 362, 844-846.	13.7	382
14	Regulation of the Proinflammatory Effects of Fas Ligand (CD95L)., 1998, 282, 1714-1717.		339
15	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	6.6	332
16	Induction of Broadly Neutralizing H1N1 Influenza Antibodies by Vaccination. Science, 2010, 329, 1060-1064.	6.0	328
17	Epstein-Barr Virus: An Important Vaccine Target for Cancer Prevention. Science Translational Medicine, 2011, 3, 107fs7.	5.8	311
18	Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature, 2014, 514, 642-645.	13.7	308

#	Article	IF	Citations
19	Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nature Reviews Immunology, 2013, 13, 693-701.	10.6	302
20	Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. Journal of Experimental Medicine, 2014, 211, 2061-2074.	4.2	297
21	Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. Journal of Experimental Medicine, 2009, 206, 1117-1134.	4.2	295
22	Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell, 2015, 162, 1090-1100.	13.5	278
23	Structural basis for diverse N-glycan recognition by HIV-1–neutralizing V1–V2–directed antibody PG16. Nature Structural and Molecular Biology, 2013, 20, 804-813.	3.6	257
24	Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature, 2012, 489, 566-570.	13.7	250
25	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> Iournal of Virology, 2014, 88, 12669-12682.	1.5	248
26	Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection. PLoS ONE, 2014, 9, e87572.	1.1	248
27	Designing Tomorrow's Vaccines. New England Journal of Medicine, 2013, 368, 551-560.	13.9	237
28	Accelerating Next-Generation Vaccine Development for Global Disease Prevention. Science, 2013, 340, 1232910.	6.0	236
29	A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine, 2008, 26, 6338-6343.	1.7	230
30	Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.	6.0	225
31	Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Science Translational Medicine, 2014, 6, 243ra88.	5.8	222
32	Flow Cytometry Reveals that H5N1 Vaccination Elicits Cross-Reactive Stem-Directed Antibodies from Multiple Ig Heavy-Chain Lineages. Journal of Virology, 2014, 88, 4047-4057.	1.5	220
33	Immunization by Avian H5 Influenza Hemagglutinin Mutants with Altered Receptor Binding Specificity. Science, 2007, 317, 825-828.	6.0	212
34	Immunization for Ebola virus infection. Nature Medicine, 1998, 4, 37-42.	15.2	211
35	Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet, The, 2014, 384, 2046-2052.	6.3	206
36	HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature, 2013, 498, 376-379.	13.7	203

#	Article	IF	CITATIONS
37	Cross-Neutralization of 1918 and 2009 Influenza Viruses: Role of Glycans in Viral Evolution and Vaccine Design. Science Translational Medicine, 2010, 2, 24ra21.	5. 8	202
38	CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nature Medicine, 2011, 17, 1128-1131.	15.2	200
39	Next-generation influenza vaccines: opportunities and challenges. Nature Reviews Drug Discovery, 2020, 19, 239-252.	21.5	192
40	DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. Lancet Infectious Diseases, The, 2011, 11, 916-924.	4.6	174
41	Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature, 2014, 505, 502-508.	13.7	140
42	Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nature Cancer, 2020, 1, 86-98.	5.7	140
43	Comparative Efficacy of Neutralizing Antibodies Elicited by Recombinant Hemagglutinin Proteins from Avian H5N1 Influenza Virus. Journal of Virology, 2008, 82, 6200-6208.	1.5	139
44	Modifications of the Human Immunodeficiency Virus Envelope Glycoprotein Enhance Immunogenicity for Genetic Immunization. Journal of Virology, 2002, 76, 5357-5368.	1.5	137
45	Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nature Medicine, 2010, 16, 1389-1391.	15.2	136
46	Rational Design of Vaccines to Elicit Broadly Neutralizing Antibodies to HIV-1. Cold Spring Harbor Perspectives in Medicine, 2011, 1, a007278-a007278.	2.9	135
47	Immunotherapy of Malignancy by In Vivo Gene Transfer into Tumors. Human Gene Therapy, 1992, 3, 399-410.	1.4	126
48	Priming Immunization with DNA Augments Immunogenicity of Recombinant Adenoviral Vectors for Both HIV-1 Specific Antibody and T-Cell Responses. PLoS ONE, 2010, 5, e9015.	1.1	125
49	The Development of CD4 Binding Site Antibodies during HIV-1 Infection. Journal of Virology, 2012, 86, 7588-7595.	1.5	123
50	Prime-Boost Interval Matters: A Randomized Phase 1 Study to Identify the Minimum Interval Necessary to Observe the H5 DNA Influenza Vaccine Priming Effect. Journal of Infectious Diseases, 2013, 208, 418-422.	1.9	117
51	Immunization with Components of the Viral Fusion Apparatus Elicits Antibodies That Neutralize Epstein-Barr Virus in B Cells and Epithelial Cells. Immunity, 2019, 50, 1305-1316.e6.	6.6	107
52	Neutralizing Antibodies Elicited by Immunization of Monkeys with DNA Plasmids and Recombinant Adenoviral Vectors Expressing Human Immunodeficiency Virus Type 1 Proteins. Journal of Virology, 2005, 79, 771-779.	1.5	100
53	Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 8334-8345.	1.5	100
54	Comparative Analysis of the Magnitude, Quality, Phenotype, and Protective Capacity of Simian Immunodeficiency Virus Gag-Specific CD8+ T Cells following Human-, Simian-, and Chimpanzee-Derived Recombinant Adenoviral Vector Immunization. Journal of Immunology, 2013, 190, 2720-2735.	0.4	99

#	Article	IF	CITATIONS
55	Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term Protection against Simian/Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 5895-5903.	1.5	92
56	Immunotherapy for Cancer by Direct Gene Transfer into Tumors. Howard Hughes Medical Institute Research Laboratories, Ann Arbor, Michigan. Human Gene Therapy, 1994, 5, 57-77.	1.4	90
57	Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Communications, 2015, 6, 8447.	5.8	88
58	The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication. Nature Medicine, 1997, 3, 333-337.	15.2	86
59	Antibodies VRC01 and 10E8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework Regions Substantially Reverted to Germline. Journal of Immunology, 2014, 192, 1100-1106.	0.4	86
60	Inhibition of the alloantibody response by CD95 ligand. Nature Medicine, 1997, 3, 843-848.	15.2	85
61	H5N1 Vaccine–Elicited Memory B Cells Are Genetically Constrained by the IGHV Locus in the Recognition of a Neutralizing Epitope in the Hemagglutinin Stem. Journal of Immunology, 2015, 195, 602-610.	0.4	83
62	Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Science Translational Medicine, 2021, 13, eabc7804.	5.8	79
63	The need and challenges for development of an Epstein-Barr virus vaccine. Vaccine, 2013, 31, B194-B196.	1.7	77
64	Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15987-15991.	3.3	74
65	A Molecular Genetic Intervention for AIDSâ€"Effects of a Transdominant Negative Form of Rev. Hughes Medical Institute Research Laboratories, Ann Arbor, Michigan. Human Gene Therapy, 1994, 5, 79-92.	1.4	69
66	Mechanism of Ad5 Vaccine Immunity and Toxicity: Fiber Shaft Targeting of Dendritic Cells. PLoS Pathogens, 2007, 3, e25.	2.1	69
67	A respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain. Science Immunology, 2020, 5, .	5 . 6	67
68	A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells. Nature, 2022, 603, 328-334.	13.7	67
69	HIV-1 Vaccines and Adaptive Trial Designs. Science Translational Medicine, 2011, 3, 79ps13.	5. 8	60
70	Differential Specificity and Immunogenicity of Adenovirus Type 5 Neutralizing Antibodies Elicited by Natural Infection or Immunization. Journal of Virology, 2010, 84, 630-638.	1.5	57
71	Elicitation of Broadly Neutralizing Influenza Antibodies in Animals with Previous Influenza Exposure. Science Translational Medicine, 2012, 4, 147ra114.	5.8	54
72	Progress in the rational design of an AIDS vaccine. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2759-2765.	1.8	50

#	Article	IF	CITATIONS
73	Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Science Translational Medicine, 2021, 13 , .	5.8	49
74	Systemic immuneâ€checkpoint blockade with antiâ€PD1 antibodies does not alter cerebral amyloidâ€Î² burden in several amyloid transgenic mouse models. Glia, 2018, 66, 492-504.	2.5	46
75	Design of a broadly reactive Lyme disease vaccine. Npj Vaccines, 2020, 5, 33.	2.9	45
76	Enhanced Exposure of the CD4-Binding Site to Neutralizing Antibodies by Structural Design of a Membrane-Anchored Human Immunodeficiency Virus Type 1 gp120 Domain. Journal of Virology, 2009, 83, 5077-5086.	1.5	43
77	A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Science Translational Medicine, 2019, 11, .	5.8	42
78	Development of a Pan-H1 Influenza Vaccine. Journal of Virology, 2018, 92, .	1.5	39
79	Outer Domain of HIV-1 gp120: Antigenic Optimization, Structural Malleability, and Crystal Structure with Antibody VRC-PG04. Journal of Virology, 2013, 87, 2294-2306.	1.5	34
80	Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022, 28, 1022-1030.	15.2	34
81	A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Science Translational Medicine, 2022, 14, eabf3685.	5.8	34
82	Gene-Based Vaccination with a Mismatched Envelope Protects against Simian Immunodeficiency Virus Infection in Nonhuman Primates. Journal of Virology, 2012, 86, 7760-7770.	1.5	31
83	Enhanced Induction of Intestinal Cellular Immunity by Oral Priming with Enteric Adenovirus 41 Vectors. Journal of Virology, 2009, 83, 748-756.	1.5	25
84	Tampering with transcription. Nature, 1991, 350, 658-658.	13.7	24
85	Decreased Pre-existing Ad5 Capsid and Ad35 Neutralizing Antibodies Increase HIV-1 Infection Risk in the Step Trial Independent of Vaccination. PLoS ONE, 2012, 7, e33969.	1.1	22
86	Phase 1 Study of Pandemic H1 DNA Vaccine in Healthy Adults. PLoS ONE, 2015, 10, e0123969.	1.1	22
87	Direct Gene Transfer for the Understanding and Treatment of Human Disease. Annals of the New York Academy of Sciences, 1994, 716, 144-153.	1.8	21
88	Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Reports, 2022, 38, 110199.	2.9	19
89	Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development. Vaccine, 2015, 33, 7344-7351.	1.7	16
90	Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine, 2019, 37, 6208-6220.	1.7	16

#	Article	IF	CITATIONS
91	Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer's disease. PLoS ONE, 2019, 14, e0226245.	1.1	16
92	Patents, economics, and pandemics. Science, 2020, 368, 1035-1035.	6.0	13
93	Extrachromosomal human immunodeficiency virus type-1 DNA can initiate a spreading infection of HL-60 cells. Journal of Cellular Biochemistry, 1991, 45, 366-373.	1.2	12
94	Comparative Immunogenicity of Human Immunodeficiency Virus Particles and Corresponding Polypeptides in a DNA Vaccine. Journal of Virology, 2005, 79, 626-631.	1.5	8
95	HIV integration and T cell death: additional commentary. Retrovirology, 2013, 10, 150.	0.9	6
96	Immunogenicity and protective efficacy of RSV G central conserved domain vaccine with a prefusion nanoparticle. Npj Vaccines, 2022, 7 , .	2.9	6
97	Liposome Mediated Gene Transfer into Vascular Cells. Journal of Liposome Research, 1993, 3, 179-199.	1.5	5
98	Calories lost â€" another mediator of cancer cachexia?. Nature Medicine, 1996, 2, 397-398.	15.2	5
99	All for one and one for all to fight flu. Nature, 2019, 565, 29-31.	13.7	3
100	Report of the Cent Gardes HIV Vaccines Conference. Part 1: The antibody response; Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25–27 October 2015. Vaccine, 2016, 34, 3557-3561.	1.7	2
101	Development of Molecular Genetic Interventions for HIV Infection. Current Protocols in Human Genetics, 1997, 12, Unit 13.6.	3.5	O