List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7477037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artifact correction in lowâ€dose dental <scp>CT</scp> imaging using Wasserstein generative adversarial networks. Medical Physics, 2019, 46, 1686-1696.	1.6	60
2	DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 35-43.	2.7	56
3	CaGAN: A Cycle-Consistent Generative Adversarial Network With Attention for Low-Dose CT Imaging. IEEE Transactions on Computational Imaging, 2020, 6, 1203-1218.	2.6	48
4	Performance of a high-resolution depth encoding PET detector using barium sulfate reflector. Physics in Medicine and Biology, 2017, 62, 5945-5958.	1.6	42
5	Dual-ended readout small animal PET detector by using 0.5Âmm pixelated LYSO crystal arrays and SiPMs. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 917, 1-8.	0.7	41
6	Development of depth encoding small animal <scp>PET</scp> detectors using dualâ€ended readout of pixelated scintillator arrays with Si <scp>PM</scp> s. Medical Physics, 2018, 45, 613-621.	1.6	40
7	Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging. Physics in Medicine and Biology, 2020, 65, 155010.	1.6	40
8	Design and performance of SIAT aPET: a uniform high-resolution small animal PET scanner using dual-ended readout detectors. Physics in Medicine and Biology, 2020, 65, 235013.	1.6	38
9	Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation. Scientific Reports, 2018, 8, 8799.	1.6	36
10	Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Physics in Medicine and Biology, 2020, 65, 215010.	1.6	31
11	ADAPTIVE-NET: deep computed tomography reconstruction network with analytical domain transformation knowledge. Quantitative Imaging in Medicine and Surgery, 2020, 10, 415-427.	1.1	30
12	A feature refinement approach for statistical interior CT reconstruction. Physics in Medicine and Biology, 2016, 61, 5311-5334.	1.6	28
13	Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2482-2492.	3.3	25
14	Performance of a SiPM based semi-monolithic scintillator PET detector. Physics in Medicine and Biology, 2017, 62, 7889-7904.	1.6	23
15	Learning a Deep CNN Denoising Approach Using Anatomical Prior Information Implemented With Attention Mechanism for Low-Dose CT Imaging on Clinical Patient Data From Multiple Anatomical Sites. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3416-3427.	3.9	23
16	Image reconstruction for positron emission tomography based on patchâ€based regularization and dictionary learning. Medical Physics, 2019, 46, 5014-5026.	1.6	22
17	Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented Wasserstein generative adversarial networks. Neurocomputing, 2021, 428, 104-115.	3.5	22
18	A GPU-accelerated fully 3D OSEM image reconstruction for a high-resolution small animal PET scanner using dual-ended readout detectors. Physics in Medicine and Biology, 2020, 65, 245007.	1.6	22

#	Article	IF	CITATIONS
19	An improved statistical iterative algorithm for sparse-view and limited-angle CT image reconstruction. Scientific Reports, 2017, 7, 10747.	1.6	20
20	Performance of long rectangular semiâ€nonolithic scintillator PET detectors. Medical Physics, 2019, 46, 1608-1619.	1.6	20
21	FaNet: fast assessment network for the novel coronavirus (COVID-19) pneumonia based on 3D CT imaging and clinical symptoms. Applied Intelligence, 2021, 51, 2838-2849.	3.3	18
22	Geometric Calibration of a Micro-CT System and Performance for Insect Imaging. IEEE Transactions on Information Technology in Biomedicine, 2011, 15, 655-660.	3.6	16
23	Compressive sampling in computed tomography: Method and application. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 748, 26-32.	0.7	16
24	Image reconstruction from few-view CT data by gradient-domain dictionary learning. Journal of X-Ray Science and Technology, 2016, 24, 627-638.	0.7	16
25	Automatic image-domain Moir \tilde{A} artifact reduction method in grating-based x-ray interferometry imaging. Physics in Medicine and Biology, 2019, 64, 195013.	1.6	16
26	Super-resolution of PET image based on dictionary learning and random forests. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 927, 320-329.	0.7	16
27	PET Image Reconstruction Using a Cascading Back-Projection Neural Network. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1100-1111.	7.3	16
28	A 3D attention residual encoder–decoder least-square GAN for low-count PET denoising. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 983, 164638.	0.7	15
29	LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks. Quantitative Imaging in Medicine and Surgery, 2021, 11, 749-762.	1.1	14
30	Low-Dose Computed Tomography Image Super-Resolution Reconstruction via Random Forests. Sensors, 2019, 19, 207.	2.1	13
31	DaNet: dose-aware network embedded with dose-level estimation for low-dose CT imaging. Physics in Medicine and Biology, 2021, 66, 015005.	1.6	13
32	Spatial adaptive and transformer fusion network (STFNet) for low ount PET blind denoising with MRI. Medical Physics, 2022, 49, 343-356.	1.6	12
33	A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers. Physics in Medicine and Biology, 2018, 63, 045009.	1.6	11
34	Improved total variation minimization method for few-view computed tomography image reconstruction. BioMedical Engineering OnLine, 2014, 13, 70.	1.3	9
35	Performance of a depth encoding PET detector module using light sharing and single-ended readout with SiPMs. Physics in Medicine and Biology, 2019, 64, 085012.	1.6	9
36	Geometric calibration of a stationary digital breast tomosynthesis system based on distributed carbon nanotube X-ray source arrays. PLoS ONE, 2017, 12, e0188367.	1.1	8

#	Article	IF	CITATIONS
37	A thick semi-monolithic scintillator detector for clinical PET scanners. Physics in Medicine and Biology, 2021, 66, 065023.	1.6	7
38	DeepPhase: Learning phase contrast signal from dual energy X-ray absorption images. Displays, 2021, 69, 102027.	2.0	7
39	Low-count PET image restoration using sparse representation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888, 222-227.	0.7	6
40	Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. Journal of X-Ray Science and Technology, 2020, 28, 541-553.	0.7	6
41	Temporal feature prior-aided separated reconstruction method for low-dose dynamic myocardial perfusion computed tomography. Physics in Medicine and Biology, 2021, 66, 045012.	1.6	6
42	Ultraâ€highâ€resolution depthâ€encoding small animal PET detectors: Using GAGG and LYSO crystal arrays. Medical Physics, 2022, 49, 3006-3020.	1.6	6
43	The synthesis of high-energy CT images from low-energy CT images using an improved cycle generative adversarial network. Quantitative Imaging in Medicine and Surgery, 2022, 12, 28-42.	1.1	5
44	PWLS-PR: low-dose computed tomography image reconstruction using a patch-based regularization method based on the penalized weighted least squares total variation approach. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2541-2559.	1.1	5
45	Correcting motion artifacts in coronary computed tomography angiography images using a dual-zone cycle generative adversarial network. Journal of X-Ray Science and Technology, 2021, 29, 577-595.	0.7	5
46	Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Biomedical Physics and Engineering Express, 2020, 6, 025009.	0.6	5
47	Investigation of BPF algorithm in cone-beam CT with 2D general trajectories. Journal of X-Ray Science and Technology, 2012, 20, 351-362.	0.7	4
48	Low-dose dental CT image enhancement using a multiscale feature sensing network. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 981, 164530.	0.7	4
49	Synthesizing PET/MR (T1-weighted) images from non-attenuation-corrected PET images. Physics in Medicine and Biology, 2021, 66, 135006.	1.6	4
50	Physical and imaging performance of SIAT aPET under different energy windows and timing windows. Medical Physics, 2022, , .	1.6	4
51	An iterative image-based inter-frame motion compensation method for dynamic brain PET imaging. Physics in Medicine and Biology, 2022, 67, 035012.	1.6	4
52	Eliminating CT radiation for clinical PET examination using deep learning. European Journal of Radiology, 2022, 154, 110422.	1.2	4
53	Super-resolution PET image reconstruction with sparse representation. , 2017, , .		3
54	Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array. Journal of X-Ray Science and Technology, 2020, 28, 1157-1169.	0.7	3

#	Article	IF	CITATIONS
55	Technical Note: A preliminary study of dualâ€ŧracer PET image reconstruction guided by FDG and/or MR kernels. Medical Physics, 2021, 48, 5259-5271.	1.6	3
56	Contrast-enhanced to noncontrast CT transformation via an adjacency content-transfer-based deep subtraction residual neural network. Physics in Medicine and Biology, 2021, 66, 145017.	1.6	3
57	An improved PET image reconstruction method based on super-resolution. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 946, 162677.	0.7	2
58	Direct and indirect parameter imaging methods for dynamic PET. Biomedical Physics and Engineering Express, 2021, 7, 045022.	0.6	2
59	MRI-aided kernel PET image reconstruction method based on texture features. Physics in Medicine and Biology, 2021, 66, 15NT03.	1.6	2
60	Low-dose PET image denoising based on coupled dictionary learning. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1020, 165908.	0.7	2
61	Dynamic PET Imaging Using Dual Texture Features. Frontiers in Computational Neuroscience, 2021, 15, 819840.	1.2	2
62	Study on 3D CT image reconstruction and interactive clipping. , 2008, , .		1
63	PET Image Reconstruction from Under-sampled Data. , 2017, , .		1
64	PET parametric imaging based on MR frequency-domain texture information. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1029, 166411.	0.7	1