
Floriana Volpicelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7477003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioral, Anti-Inflammatory, and Neuroprotective Effects of a Novel FPR2 Agonist in Two Mouse Models of Autism. Pharmaceuticals, 2022, 15, 161.	1.7	8
2	In Vitro and In Silico Analysis of the Residence Time of Serotonin 5-HT ₇ Receptor Ligands with Arylpiperazine Structure: A Structure–Kinetics Relationship Study. ACS Chemical Neuroscience, 2022, 13, 497-509.	1.7	3
3	Music affects functional brain connectivity and is effective in the treatment of neurological disorders. Reviews in the Neurosciences, 2022, 33, 789-801.	1.4	10
4	Lmx1a-Dependent Activation of miR-204/211 Controls the Timing of Nurr1-Mediated Dopaminergic Differentiation. International Journal of Molecular Sciences, 2022, 23, 6961.	1.8	3
5	Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells, 2021, 10, 735.	1.8	88
6	Presynaptic protein synthesis and brain plasticity: From physiology to neuropathology. Progress in Neurobiology, 2021, 202, 102051.	2.8	17
7	Generation of High-Yield, Functional Oligodendrocytes from a c-myc Immortalized Neural Cell Line, Endowed with Staminal Properties. International Journal of Molecular Sciences, 2021, 22, 1124.	1.8	1
8	miR-218 Inhibits Mitochondrial Clearance by Targeting PRKN E3 Ubiquitin Ligase. International Journal of Molecular Sciences, 2020, 21, 355.	1.8	21
9	Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. International Journal of Molecular Sciences, 2020, 21, 7777.	1.8	345
10	Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 3995.	1.8	16
11	Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. International Journal of Molecular Sciences, 2020, 21, 505.	1.8	38
12	The microRNA-29a Modulates Serotonin 5-HT7 Receptor Expression and Its Effects on Hippocampal Neuronal Morphology. Molecular Neurobiology, 2019, 56, 8617-8627.	1.9	23
13	Neutralization of ILâ€17 rescues amyloidâ€Î²â€induced neuroinflammation and memory impairment. British Journal of Pharmacology, 2019, 176, 3544-3557.	2.7	93
14	miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation. Stem Cell Reports, 2018, 10, 1237-1250.	2.3	47
15	Information content of dendritic spines after motor learning. Behavioural Brain Research, 2018, 336, 256-260.	1.2	11
16	NR4A2 (Nuclear Receptor Subfamily 4, Group A, Member 2). , 2018, , 3568-3574.		0
17	Biological bases of human musicality. Reviews in the Neurosciences, 2017, 28, 235-245.	1.4	11
18	Serotonin 5â€ <scp>HT</scp> 7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. Journal of Neurochemistry, 2017, 141, 647-661.	2.1	66

FLORIANA VOLPICELLI

#	Article	IF	CITATIONS
19	The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK. Neuropharmacology, 2016, 101, 426-438.	2.0	46
20	A targeted secretome profiling by multiplexed immunoassay revealed that secreted chemokine ligand 2 (MCP-1/CCL2) affects neural differentiation in mesencephalic neural progenitor cells. Proteomics, 2015, 15, 714-724.	1.3	17
21	Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Frontiers in Behavioral Neuroscience, 2015, 9, 62.	1.0	43
22	Ruta graveolens L. Induces Death of Glioblastoma Cells and Neural Progenitors, but Not of Neurons, via ERK 1/2 and AKT Activation. PLoS ONE, 2015, 10, e0118864.	1.1	37
23	The Notch intracellular domain represses CRE-dependent transcription. Cellular Signalling, 2015, 27, 621-629.	1.7	25
24	Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacology, 2015, 89, 33-42.	2.0	41
25	The serotonin receptor 7 and the structural plasticity of brain circuits. Frontiers in Behavioral Neuroscience, 2014, 8, 318.	1.0	51
26	Neuronal Differentiation Dictates Estrogen-Dependent Survival and ERK1/2 Kinetic by Means of Caveolin-1. PLoS ONE, 2014, 9, e109671.	1.1	7
27	The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology, 2013, 67, 155-167.	2.0	62
28	Secretome profiling of differentiated neural mes-c-myc A1 cell line endowed with stem cell properties. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2385-2395.	1.1	15
29	Adult neural stem cells: an endogenous tool to repair brain injury?. Journal of Neurochemistry, 2013, 124, 159-167.	2.1	79
30	Direct Regulation of Pitx3 Expression by Nurr1 in Culture and in Developing Mouse Midbrain. PLoS ONE, 2012, 7, e30661.	1.1	45
31	Krüppel-like factor 7 is required for olfactory bulb dopaminergic neuron development. Experimental Cell Research, 2011, 317, 464-473.	1.2	24
32	Comparison of Gene Expression Profile in Embryonic Mesencephalon and Neuronal Primary Cultures. PLoS ONE, 2009, 4, e4977.	1.1	12
33	The molecular code involved in midbrain dopaminergic neuron development and maintenance. Rendiconti Lincei, 2008, 19, 271-290.	1.0	4
34	Differentiation of mesencephalic neural cells changes estrogenâ€dependent ERK1/2 kinetic by means of caveolinâ€1. FASEB Journal, 2008, 22, 579-579.	0.2	1
35	FLUOXETINE modifies the expression of serotonergic markers in a differentiation-dependent fashion in the mesencephalic neural cell line A1 mes c-myc. Brain Research, 2007, 1143, 1-10.	1.1	16
36	Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro. Journal of Neurochemistry, 2007, 102, 441-453.	2.1	85

FLORIANA VOLPICELLI

#	Article	IF	CITATIONS
37	GDNF signaling in embryonic midbrain neurons in vitro. Brain Research, 2007, 1159, 28-39.	1.1	39
38	Enhancement of Dopaminergic Differentiation in Proliferating Midbrain Neuroblasts by Sonic Hedgehog and Ascorbic Acid. Neural Plasticity, 2004, 11, 45-57.	1.0	28
39	Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones. Journal of Neurochemistry, 2004, 90, 256-256.	2.1	Ο
40	Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones. Journal of Neurochemistry, 2004, 88, 1283-1294.	2.1	30
41	Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neuroscience and Biobehavioral Reviews, 2003, 27, 661-669.	2.9	87
42	Regionalized Neurofilament Accumulation and Motoneuron Degeneration Are Linked Phenotypes in Wobbler Neuromuscular Disease. Neurobiology of Disease, 2001, 8, 581-589.	2.1	18