
Timothy Canty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7476778/publications.pdf Version: 2024-02-01

ΤΙΜΟΤΗΥ CANTY

#	Article	IF	CITATIONS
1	Emissions estimation from satellite retrievals: A review of current capability. Atmospheric Environment, 2013, 77, 1011-1042.	1.9	323
2	A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,	1.5	116
3	Measured and modeled CO and NO y in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US. Atmospheric Environment, 2014, 96, 78-87.	1.9	114
4	Ozone and NO _{<i>x</i>} chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI) data. Atmospheric Chemistry and Physics, 2015, 15, 10965-10982.	1.9	84
5	Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. Journal of Geophysical Research, 2010, 115, .	3.3	66
6	Understanding the kinetics of the ClO dimer cycle. Atmospheric Chemistry and Physics, 2007, 7, 3055-3069.	1.9	65
7	Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmospheric Chemistry and Physics, 2012, 12, 1255-1285.	1.9	63
8	An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling. Atmospheric Chemistry and Physics, 2013, 13, 3997-4031.	1.9	59
9	Toward a better quantitative understanding of polar stratospheric ozone loss. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	58
10	Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011. Atmospheric Chemistry and Physics, 2013, 13, 7859-7874.	1.9	55
11	Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmospheric Chemistry and Physics, 2012, 12, 10945-10955.	1.9	53
12	Validation of Aura Microwave Limb Sounder OH and HO ₂ measurements. Journal of Geophysical Research, 2008, 113, .	3.3	48
13	High ozone concentrations on hot days: The role of electric power demand and NO _x emissions. Geophysical Research Letters, 2013, 40, 5291-5294.	1.5	46
14	CAMx ozone source attribution in the eastern United States using guidance from observations during DISCOVERâ€AQ Maryland. Geophysical Research Letters, 2016, 43, 2249-2258.	1.5	39
15	Stratospheric Injection of Brominated Very Shortâ€Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5690-5719.	1.2	36
16	Stratospheric and mesospheric HOx: Results from Aura MLS and FIRS-2. Geophysical Research Letters, 2006, 33, .	1.5	33
17	A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications, 2016, 7, 10267.	5.8	33
18	Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX. Atmospheric Environment, 2017, 164, 325-336.	1.9	33

ΤΙΜΟΤΗΥ CANTY

#	Article	IF	CITATIONS
19	Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAMâ€Chem and the CCMI Models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11201-11226.	1.2	32
20	Changes in Global Tropospheric OH Expected as a Result of Climate Change Over the Last Several Decades. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,774.	1.2	31
21	Evaluating commercial marine emissions and their role in air quality policy using observations and the CMAQ model. Atmospheric Environment, 2018, 173, 96-107.	1.9	30
22	Nighttime OClO in the winter Arctic vortex. Journal of Geophysical Research, 2005, 110, .	3.3	27
23	Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 1327-1338.	1.9	27
24	Quantifying the causes of differences in tropospheric OH within global models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1983-2007.	1.2	27
25	Validation of Aura MLS HOxmeasurements with remote-sensing balloon instruments. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	24
26	The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model. Atmospheric Measurement Techniques, 2018, 11, 6289-6307.	1.2	24
27	The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone. Geophysical Research Letters, 2016, 43, 9869-9876.	1.5	23
28	Link Between Arctic Tropospheric BrO Explosion Observed From Space and Seaâ€Salt Aerosols From Blowing Snow Investigated Using Ozone Monitoring Instrument BrO Data and GEOSâ€5 Data Assimilation System. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6954-6983.	1.2	23
29	Seasonal and solar cycle variability of OH in the middle atmosphere. Journal of Geophysical Research, 2002, 107, ACH 1-1.	3.3	21
30	Denitrification in the Arctic mid-winter 2004/2005 observed by airborne submillimeter radiometry. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	21
31	A measurement/model comparison of ozone photochemical loss in the Antarctic ozone hole using Polar Ozone and Aerosol Measurement observations and the Match technique. Journal of Geophysical Research, 2005, 110, .	3.3	20
32	Polar stratospheric chlorine kinetics from a selfâ€match flight during SOLVEâ€II/EUPLEX. Geophysical Research Letters, 2008, 35, .	1.5	20
33	Paris Climate Agreement: Beacon of Hope. Springer Climate, 2017, , .	0.3	20
34	An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488.	1.2	18
35	Using near-road observations of CO, NOy, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity. Atmospheric Environment, 2020, 232, 117558.	1.9	16
36	Evidence for an increase in the ozone photochemical lifetime in the eastern United States using a regional air quality model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12778-12793.	1.2	14

Τιμοτην Canty

#	Article	IF	CITATIONS
37	Linking improvements in sulfur dioxide emissions to decreasing sulfate wet deposition by combining satellite and surface observations with trajectory analysis. Atmospheric Environment, 2019, 199, 210-223.	1.9	14
38	Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate. Earth System Dynamics, 2021, 12, 545-579.	2.7	14
39	Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements. Atmospheric Chemistry and Physics, 2011, 11, 5183-5193.	1.9	12
40	Validation of Aura Microwave Limb Sounder OH measurements with Fourier Transform Ultraâ€Violet Spectrometer total OH column measurements at Table Mountain, California. Journal of Geophysical Research, 2008, 113, .	3.3	11
41	The kinetics of the ClOOCl catalytic cycle. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,768.	1.2	9
42	Stratospheric Ozone Depletion and Recovery. , 2018, , 177-209.		9
43	Forecasting Global Warming. Springer Climate, 2017, , 51-113.	0.3	9
44	New retrieval of BrO from SCIAMACHY limb: an estimate of the stratospheric bromine loading during April 2008. Atmospheric Measurement Techniques, 2013, 6, 2549-2561.	1.2	8
45	Hydroxyl column abundance measurements: PEPSIOS instrumentation at the Fritz Peak Observatory and data analysis techniques. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 335-344.	0.6	6
46	Paris INDCs. Springer Climate, 2017, , 115-146.	0.3	6
47	Expected ozone benefits of reducing nitrogen oxide (NO _x) emissions from coal-fired electricity generating units in the eastern United States. Journal of the Air and Waste Management Association, 2017, 67, 279-291.	0.9	5
48	Measured and modelled ozone photochemical production in the Baltimore-Washington airshed. Atmospheric Environment: X, 2019, 2, 100017.	0.8	5
49	Acute ambient air pollution exposure and placental Doppler results in the NICHD fetal growth studies – Singleton cohort. Environmental Research, 2021, 202, 111728.	3.7	4
50	Multidecadal trends in ozone chemistry in the Baltimore-Washington Region. Atmospheric Environment, 2022, 285, 119239.	1.9	4
51	Investigation of the Community Multiscale air quality (CMAQ) model representation of the Climate Penalty Factor (CPF). Atmospheric Environment, 2022, 283, 119157.	1.9	3
52	Constraints for the photolysis rate and the equilibrium constant of ClOâ€dimer from airborne and balloonâ€borne measurements of chlorine compounds. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6916-6937.	1.2	1
53	Evaluation of the Stratospheric and Tropospheric Bromine Burden Over Fairbanks, Alaska Based on Column Retrievals of Bromine Monoxide. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032896.	1.2	1
54	Earth's Climate System. Springer Climate, 2017, , 1-50.	0.3	1