
Marcel R Hoosbeek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7476272/publications.pdf Version: 2024-02-01

MARCEL R HOOSBEEK

#	Article	IF	CITATIONS
1	Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon. Plant and Soil, 2021, 469, 423-441.	3.7	15
2	Soil C, N and P cycling enzyme responses to nutrient limitation under elevated CO2. Biogeochemistry, 2020, 151, 221-235.	3.5	18
3	Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 2019, 9, 684-689.	18.8	269
4	Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 2018, 32, 461-474.	3.6	90
5	Elevated CO2 increased phosphorous loss from decomposing litter and soil organic matter at two FACE experiments with trees. Biogeochemistry, 2016, 127, 89-97.	3.5	18
6	Developing and Adapting Soil Process Submodels for Use in the Pedodynamic Orthod Model. SSSA Special Publication Series, 2015, , 111-128.	0.2	7
7	The use of radiocarbon to constrain current and future soil organic matter turnover and transport in a temperate forest. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 372-391.	3.0	26
8	Modeling the vertical soil organic matter profile using Bayesian parameter estimation. Biogeosciences, 2013, 10, 399-420.	3.3	50
9	Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of <scp><scp>CO₂</scp></scp> and temperature. Global Change Biology, 2012, 18, 2681-2693.	9.5	365
10	SOMPROF: A vertically explicit soil organic matter model. Ecological Modelling, 2011, 222, 1712-1730.	2.5	75
11	Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.	8.8	46
12	Bio-Energy Retains Its Mitigation Potential Under Elevated CO2. PLoS ONE, 2010, 5, e11648.	2.5	16
13	Litter Quality ofPopulusSpecies as Affected by Free-AirCO2Enrichment and N-Fertilization. Applied and Environmental Soil Science, 2009, 2009, 1-11.	1.7	0
14	Increased Litter Build Up and Soil Organic Matter Stabilization in a Poplar Plantation After 6ÂYears of Atmospheric CO2 Enrichment (FACE): Final Results of POP-EuroFACE Compared to Other Forest FACE Experiments. Ecosystems, 2009, 12, 220-239.	3.4	64
15	Coppicing shifts CO ₂ stimulation of poplar productivity to aboveâ€ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytologist, 2009, 182, 331-346.	7.3	45
16	Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14014-14019.	7.1	353
17	Increased nitrogen-use efficiency of a short-rotation poplar plantation in elevated CO2 concentration. Tree Physiology, 2007, 27, 1153-1163.	3.1	50
18	Free atmospheric CO2 enrichment (FACE) increased respiration and humification in the mineral soil of a poplar plantation. Geoderma, 2007, 138, 204-212.	5.1	30

Marcel R Hoosbeek

#	Article	IF	CITATIONS
19	Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology, 2006, 12, 1094-1106.	9.5	115
20	Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter. Plant and Soil, 2006, 281, 15-24.	3.7	345
21	Free Atmospheric CO2 Enrichment (FACE) Increased Labile and Total Carbon in the Mineral Soil of a Short Rotation Poplar Plantation. Plant and Soil, 2006, 281, 247-254.	3.7	64
22	More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect?. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	135
23	Title is missing!. Nutrient Cycling in Agroecosystems, 2003, 66, 43-69.	2.2	60
24	Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and NÂdeposition. Global Change Biology, 2002, 8, 1130-1138.	9.5	69
25	Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytologist, 2001, 150, 459-463.	7.3	38
26	Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 2001, 7, 591-598.	9.5	307
27	Interpolation of agronomic data from plot to field scale: using a clustered versus a spatially randomized block design. Geoderma, 1998, 81, 265-280.	5.1	9
28	Incorporating scale into spatio-temporal variability: applications to soil quality and yield data. Geoderma, 1998, 85, 113-131.	5.1	15
29	Towards the quantitative modeling of pedogenesis: a review — Reply. Geoderma, 1994, 63, 303-307.	5.1	5
30	Towards the quantitative modeling of pedogenesis $\hat{a} \in \mathbb{R}$ a review. Geoderma, 1992, 55, 183-210.	5.1	203
31	Soil chemical changes in ancient irrigated fields of Udhruá,¥, southern Jordan. Geoarchaeology - an International Journal, 0, , .	1.5	0