
Carmen MarÃ-a DomÃ-nguez Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7476063/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abatement of chlorobenzenes in aqueous phase by persulfate activated by alkali enhanced by surfactant addition. Journal of Environmental Management, 2022, 306, 114475.	7.8	18
2	Non-Ionic Surfactant Recovery in Surfactant Enhancement Aquifer Remediation Effluent with Chlorobenzenes by Semivolatile Chlorinated Organic Compounds Volatilization. International Journal of Environmental Research and Public Health, 2022, 19, 7547.	2.6	2
3	Regeneration of Granulated Spent Activated Carbon with 1,2,4-Trichlorobenzene Using Thermally Activated Persulfate. Industrial & Engineering Chemistry Research, 2022, 61, 9611-9620.	3.7	5
4	Abatement of Naphthalene by Persulfate Activated by Goethite and Visible LED Light at Neutral pH: Effect of Common Ions and Organic Matter. Catalysts, 2022, 12, 732.	3.5	0
5	Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase. Science of the Total Environment, 2021, 751, 141782.	8.0	30
6	Remediation of HCHs-contaminated sediments by chemical oxidation treatments. Science of the Total Environment, 2021, 751, 141754.	8.0	32
7	Abatement of 1,2,4-Trichlorobencene by Wet Peroxide Oxidation Catalysed by Goethite and Enhanced by Visible LED Light at Neutral pH. Catalysts, 2021, 11, 139.	3.5	16
8	Application of Chelating Agents to Enhance Fenton Process in Soil Remediation: A Review. Catalysts, 2021, 11, 722.	3.5	28
9	Special Issue on "Green Catalysts: Application to Waste and Groundwater Treatmentâ€: Catalysts, 2021, 11, 1043.	3.5	0
10	Degradation of HCHs by thermally activated persulfate in soil system: Effect of temperature and oxidant concentration. Journal of Environmental Chemical Engineering, 2021, 9, 105668.	6.7	37
11	Remediation of real soil polluted with hexachlorocyclohexanes (α-HCH and β-HCH) using combined thermal and alkaline activation of persulfate: Optimization of the operating conditions. Separation and Purification Technology, 2021, 270, 118795.	7.9	27
12	Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase. Chemosphere, 2020, 239, 124798.	8.2	34
13	Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe(II). Journal of Environmental Management, 2020, 255, 109926.	7.8	25
14	Remediation of soil contaminated by lindane wastes using alkaline activated persulfate: Kinetic model. Chemical Engineering Journal, 2020, 393, 124646.	12.7	50
15	Humic acids extracted from compost as amendments for Fenton treatment of diesel-contaminated soil. Environmental Science and Pollution Research, 2020, 27, 22225-22234.	5.3	17
16	Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater. Journal of Environmental Management, 2020, 261, 110240.	7.8	44
17	Abatement of dichloromethane using persulfate activated by alkali: A kinetic study. Separation and Purification Technology, 2020, 241, 116679.	7.9	42
18	Wet Peroxide Oxidation of Chlorobenzenes Catalyzed by Goethite and Promoted by Hydroxylamine. Catalysts, 2019, 9, 553.	3.5	15

Carmen MarÃa DomÃnguez

#	Article	IF	CITATIONS
19	Improved Etherification of Glycerol with Tert-Butyl Alcohol by the Addition of Dibutyl Ether as Solvent. Catalysts, 2019, 9, 378.	3.5	21
20	Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Science of the Total Environment, 2019, 666, 631-640.	8.0	55
21	Soil flushing pilot test in a landfill polluted with liquid organic wastes from lindane production. Heliyon, 2019, 5, e02875.	3.2	13
22	Selective removal of chlorinated organic compounds from lindane wastes by combination of nonionic surfactant soil flushing and Fenton oxidation. Chemical Engineering Journal, 2019, 376, 120009.	12.7	52
23	Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics. Water Research, 2018, 135, 220-230.	11.3	111
24	Removal of organochlorine pesticides from lindane production wastes by electrochemical oxidation. Environmental Science and Pollution Research, 2018, 25, 34985-34994.	5.3	29
25	Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation. Environmental Science and Pollution Research, 2018, 25, 34811-34817.	5.3	10
26	Removal of lindane wastes by advanced electrochemical oxidation. Chemosphere, 2018, 202, 400-409.	8.2	80
27	Phenol abatement using persulfate activated by nZVI, H ₂ O ₂ and NaOH and development of a kinetic model for alkaline activation. Environmental Technology (United Kingdom), 2018, 39, 35-43.	2.2	23
28	Optimization of electro-Fenton process for effective degradation of organochlorine pesticide lindane. Catalysis Today, 2018, 313, 196-202.	4.4	66
29	Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Science of the Total Environment, 2018, 615, 1070-1077.	8.0	89
30	In situ chemical reduction of chlorinated organic compounds from lindane production wastes by zero valent iron microparticles. Journal of Water Process Engineering, 2018, 26, 146-155.	5.6	26
31	Kinetics of Lindane Dechlorination by Zerovalent Iron Microparticles: Effect of Different Salts and Stability Study. Industrial & Engineering Chemistry Research, 2016, 55, 12776-12785.	3.7	32
32	Degradation of Hexachlorocyclohexanes (HCHs) by Stable Zero Valent Iron (ZVI) Microparticles. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	30
33	Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. Journal of Chemical Technology and Biotechnology, 2016, 91, 2882-2887.	3.2	18
34	Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water. Science of the Total Environment, 2016, 563-564, 657-663.	8.0	57
35	Remediation of soil contaminated by <scp>NAPLs</scp> using modified Fenton reagent: application to gasoline type compounds. Journal of Chemical Technology and Biotechnology, 2015, 90, 754-764.	3.2	23
36	Role of the chemical structure of ionic liquids in their ecotoxicity and reactivity towards Fenton oxidation. Separation and Purification Technology, 2015, 150, 252-256.	7.9	36

Carmen MarÃa DomÃnguez

#	Article	IF	CITATIONS
37	Ionic liquids breakdown by Fenton oxidation. Catalysis Today, 2015, 240, 16-21.	4.4	64
38	Degradation of imidazoliumâ€based ionic liquids in aqueous solution by Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1197-1202.	3.2	53
39	Graphite and carbon black materials as catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2014, 144, 599-606.	20.2	54
40	Treatment of real winery wastewater by wet oxidation at mild temperature. Separation and Purification Technology, 2014, 129, 121-128.	7.9	45
41	Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process. Environmental Science and Pollution Research, 2014, 21, 12198-12207.	5.3	49
42	Remediation of soil polluted with herbicides by Fenton-like reaction: Kinetic model of diuron degradation. Applied Catalysis B: Environmental, 2014, 144, 252-260.	20.2	37
43	Kinetics of wet peroxide oxidation of phenol with a gold/activated carbon catalyst. Chemical Engineering Journal, 2014, 253, 486-492.	12.7	34
44	Glycerol etherification over acid ion exchange resins: effect of catalyst concentration and reusability. Journal of Chemical Technology and Biotechnology, 2013, 88, 2027-2038.	3.2	17
45	Etherification of Glycerol with Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2013, 52, 14545-14555.	3.7	23
46	Highly efficient application of activated carbon as catalyst for wet peroxide oxidation. Applied Catalysis B: Environmental, 2013, 140-141, 663-670.	20.2	91
47	The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition. Carbon, 2013, 60, 76-83.	10.3	43
48	Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chemical Engineering Journal, 2012, 213, 225-234.	12.7	49
49	Etherification of Glycerol by <i>tert</i> -Butyl Alcohol: Kinetic Model. Industrial & Engineering Chemistry Research, 2012, 51, 9500-9509.	3.7	45
50	Diuron abatement in contaminated soil using Fenton-like process. Chemical Engineering Journal, 2012, 183, 357-364.	12.7	31
51	Supported gold nanoparticle catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2012, 111-112, 81-89.	20.2	56
52	Soil remediation by Fenton-like process: Phenol removal and soil organic matter modification. Chemical Engineering Journal, 2011, 170, 36-43.	12.7	71
53	Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method. Chemical Engineering Journal, 2011, 170, 127-135.	12.7	140
54	Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal, 2010, 162, 257-265.	12.7	199

#	Article	IF	CITATIONS
55	Exploring the application of chemical oxidation treatments for the remediation of HCHs-contaminated soil $\hat{A}.$, 0, , .		0