
## **Gonzalo Diarce Belloso**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7475946/publications.pdf Version: 2024-02-01



5

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Intercomparative tests on phase change materials characterisation with differential scanning calorimeter. Applied Energy, 2013, 109, 415-420.                                                        | 10.1 | 117       |
| 2  | Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants. Renewable Energy, 2016, 96, 120-136.                             | 8.9  | 84        |
| 3  | A comparative study of the CFD modeling of a ventilated active façade including phase change materials. Applied Energy, 2014, 126, 307-317.                                                          | 10.1 | 76        |
| 4  | Ventilated active façades with PCM. Applied Energy, 2013, 109, 530-537.                                                                                                                              | 10.1 | 59        |
| 5  | Thermal enhanced cement-lime mortars with phase change materials (PCM), lightweight aggregate and cellulose fibers. Construction and Building Materials, 2019, 221, 586-594.                         | 7.2  | 49        |
| 6  | Development and comparative analysis of the modeling of an innovative finned-plate latent heat thermal energy storage system. Energy, 2013, 58, 438-447.                                             | 8.8  | 36        |
| 7  | Solar energy system for heating and domestic hot water supply by means of a heat pump coupled to a photovoltaic ventilated façade. Solar Energy, 2019, 183, 453-462.                                 | 6.1  | 36        |
| 8  | Design of a Finned Plate Latent Heat Thermal Energy Storage System for Domestic Applications. Energy<br>Procedia, 2014, 48, 300-308.                                                                 | 1.8  | 32        |
| 9  | The error of neglecting natural convection in high temperature vertical shell-and-tube latent heat thermal energy storage systems. Solar Energy, 2018, 174, 489-501.                                 | 6.1  | 30        |
| 10 | The role of the design and operation of individual heating systems for the energy retrofits of residential buildings. Energy Conversion and Management, 2016, 126, 736-747.                          | 9.2  | 24        |
| 11 | An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems. Renewable Energy, 2019, 132, 694-708. | 8.9  | 23        |
| 12 | A novel correlation for the direct determination of the discharging time of plate-based latent heat thermal energy storage systems. Applied Thermal Engineering, 2018, 129, 521-534.                 | 6.0  | 17        |
| 13 | IEA SHC Task 42 / ECES Annex 29 – Working Group B: Applications of Compact Thermal Energy Storage.<br>Energy Procedia, 2016, 91, 231-245.                                                            | 1.8  | 16        |
| 14 | IEA SHC Task 42 / ECES Annex 29 WG A1: Engineering and Processing of PCMs, TCMs and Sorption Materials. Energy Procedia, 2016, 91, 207-217.                                                          | 1.8  | 14        |
| 15 | Parametric characterization of a full-scale plate-based latent heat thermal energy storage system.<br>Applied Thermal Engineering, 2020, 178, 115441.                                                | 6.0  | 12        |
| 16 | Experimental Devices to Investigate the Long-Term Stability of Phase Change Materials under Application Conditions. Applied Sciences (Switzerland), 2020, 10, 7968.                                  | 2.5  | 11        |
| 17 | A simple method for the design of thermal energy storage systems. Energy Storage, 2020, 2, e140.                                                                                                     | 4.3  | 8         |
|    |                                                                                                                                                                                                      |      |           |

18 Technical Performance Assessment of Phase Change Material Components. , 2019, , .

2

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Validation of heat transfer models for PCMs with a conductivimeter. Energy Procedia, 2012, 30, 395-403.                                                            | 1.8 | 4         |
| 20 | Long-term assessment of the thermal stability of sodium nitrate-urea eutectic phase change material.<br>Solar Energy Materials and Solar Cells, 2021, 230, 111261. | 6.2 | 3         |
| 21 | Unsupervised Clustering for Pattern Recognition of Heating Energy Demand in Buildings Connected to District-Heating Network. , 2021, , .                           |     | 1         |
| 22 | PROBLEM – SOLVING IN THERMAL ENGINEERING BASED ON FLIPPED LEARNING METHODOLOGY. EDULEARN Proceedings, 2018, , .                                                    | 0.0 | 0         |
| 23 | INTRODUCING SUSTAINABILITY AND THE AGENDA 2030 IN ENGINEERING DEGREES THROUGH THE RESEARCH BASED LEARNING METHODOLOGY. , 2020, , .                                 |     | 0         |
|    |                                                                                                                                                                    |     |           |