Katarina Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7475919/publications.pdf

Version: 2024-02-01

136740 329751 12,796 37 32 37 h-index citations g-index papers 40 40 40 14232 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Actomyosin contractility requirements and reciprocal cell–tissue mechanics for cancer cell invasion through collagen-based channels. European Physical Journal E, 2022, 45, 48.	0.7	7
2	Cell migration through three-dimensional confining pores: speed accelerations by deformation and recoil of the nucleus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180225.	1.8	62
3	Immature Neutrophils Released in Acute Inflammation Exhibit Efficient Migration despite Incomplete Segmentation of the Nucleus. Journal of Immunology, 2019, 202, 207-217.	0.4	33
4	Cancer invasion into musculature: Mechanics, molecules and implications. Seminars in Cell and Developmental Biology, 2019, 93, 36-45.	2.3	35
5	Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nature Communications, 2018, 9, 4539.	5.8	73
6	Bursting the Bubble $\hat{a} \in$ "Nuclear Envelope Rupture as a Path to Genomic Instability?. Trends in Cell Biology, 2017, 27, 546-555.	3.6	97
7	Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins. Cell Adhesion and Migration, 2017, 11, 447-463.	1.1	23
8	Nuclear envelope rupture: Actin fibers are putting the squeeze on the nucleus. Journal of Cell Biology, 2016, 215, 5-8.	2.3	55
9	Nuclear envelope rupture and repair during cancer cell migration. Science, 2016, 352, 353-358.	6.0	1,003
10	Collective cell migration: guidance principles and hierarchies. Trends in Cell Biology, 2015, 25, 556-566.	3.6	340
11	Cancer cell migration in 3D tissue: Negotiating space by proteolysis and nuclear deformability. Cell Adhesion and Migration, 2015, 9, 357-366.	1.1	69
12			
	Cell jamming: Collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2386-2395.	1.1	260
13	Cell jamming: Collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2386-2395. Rho-directed forces in collective migration. Nature Cell Biology, 2014, 16, 208-210.	1.1 4.6	260 45
13 14	Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2386-2395.		
	Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2386-2395. Rho-directed forces in collective migration. Nature Cell Biology, 2014, 16, 208-210. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by	4.6	45
14	Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2386-2395. Rho-directed forces in collective migration. Nature Cell Biology, 2014, 16, 208-210. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 2013, 201, 1069-1084. Probing the compressibility of tumor cell nuclei by combined atomic force–confocal microscopy.	4.6 2.3	45 1,123
14 15	Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2386-2395. Rho-directed forces in collective migration. Nature Cell Biology, 2014, 16, 208-210. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 2013, 201, 1069-1084. Probing the compressibility of tumor cell nuclei by combined atomic force–confocal microscopy. Physical Biology, 2013, 10, 065002. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical	4.6 2.3 0.8	1,123 120

#	Article	IF	Citations
19	p27 ^{kip1} Controls Cell Morphology and Motility by Regulating Microtubule-Dependent Lipid Raft Recycling. Molecular and Cellular Biology, 2010, 30, 2229-2240.	1.1	68
20	Plasticity of cell migration: a multiscale tuning model. Journal of Cell Biology, 2010, 188, 11-19.	2.3	1,187
21	MMP13 mediates cell cycle progression in melanocytes and melanoma cells: in vitro studies of migration and proliferation. Molecular Cancer, 2010, 9, 201.	7.9	49
22	Plasticity of cell migration: a multiscale tuning model. Journal of Experimental Medicine, 2010, 207, i4-i4.	4.2	14
23	The Tumor Suppressor Functions of p27 ^{kip1} Include Control of the Mesenchymal/Amoeboid Transition. Molecular and Cellular Biology, 2009, 29, 5031-5045.	1.1	60
24	Proteolytic interstitial cell migration: a five-step process. Cancer and Metastasis Reviews, 2009, 28, 129-135.	2.7	242
25	Mapping proteolytic cancer cell-extracellular matrix interfaces. Clinical and Experimental Metastasis, 2009, 26, 289-298.	1.7	213
26	Collagen-based cell migration models in vitro and in vivo. Seminars in Cell and Developmental Biology, 2009, 20, 931-941.	2.3	558
27	Tube Travel: The Role of Proteases in Individual and Collective Cancer Cell Invasion. Cancer Research, 2008, 68, 7247-7249.	0.4	297
28	Stathmin Activity Influences Sarcoma Cell Shape, Motility, and Metastatic Potential. Molecular Biology of the Cell, 2008, 19, 2003-2013.	0.9	121
29	Biological Second and Third Harmonic Generation Microscopy. Current Protocols in Cell Biology, 2007, 34, Unit 4.15.	2.3	76
30	Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biology, 2007, 9, 893-904.	4.6	888
31	Molecular mechanisms of cancer cell invasion and plasticity. British Journal of Dermatology, 2006, 154, 11-15.	1.4	138
32	Functional imaging of pericellular proteolysis in cancer cell invasion. Biochimie, 2005, 87, 315-320.	1.3	62
33	Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer, 2003, 3, 362-374.	12.8	2,757
34	Compensation mechanism in tumor cell migration. Journal of Cell Biology, 2003, 160, 267-277.	2.3	1,284
35	Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood, 2003, 102, 3262-3269.	0.6	400
36	Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochemical Society Symposia, 2003, 70, 277-285.	2.7	111

#	ARTICLE	IF	CITATIONS
37	Functional Hierarchy of Simultaneously Expressed Adhesion Receptors: Integrin $\hat{l}\pm2\hat{l}^21$ but Not CD44 Mediates MV3 Melanoma Cell Migration and Matrix Reorganization within Three-dimensional Hyaluronan-containing Collagen Matrices. Molecular Biology of the Cell, 1999, 10, 3067-3079.	0.9	121