
Bruno M Brentan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7475900/publications.pdf Version: 2024-02-01

RRUNO M RRENTAN

#	Article	IF	CITATIONS
1	District metered area design through multicriteria and multiobjective optimization. Mathematical Methods in the Applied Sciences, 2022, 45, 3254-3271.	1.2	19
2	Rehabilitation in Intermittent Water Distribution Networks for Optimal Operation. Water (Switzerland), 2022, 14, 88.	1.2	6
3	A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation. Water (Switzerland), 2022, 14, 514.	1.2	18
4	Using data mining techniques to isolate chemical intrusion in water distribution systems. Environmental Monitoring and Assessment, 2022, 194, 203.	1.3	2
5	Energy and Hydraulic Efficiency in Intermittent Operation of Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	3
6	Hydraulic Capacity Recovery after Demand Expansion: Complex Network and Preference-Aided Multicriteria Analysis. , 2022, , .		1
7	Graph Convolutional Recurrent Neural Networks for Water Demand Forecasting. Water Resources Research, 2022, 58, .	1.7	24
8	Optimal sensor placement for contamination detection: A multi-objective and probabilistic approach. Environmental Modelling and Software, 2021, 135, 104896.	1.9	16
9	Water Quality Sensor Placement: A Multi-Objective and Multi-Criteria Approach. Water Resources Management, 2021, 35, 225-241.	1.9	28
10	Cyber-Attack Detection in Water Distribution Systems Based on Blind Sources Separation Technique. Water (Switzerland), 2021, 13, 795.	1.2	10
11	Near–Real Time Burst Location and Sizing in Water Distribution Systems Using Artificial Neural Networks. Water (Switzerland), 2021, 13, 1841.	1.2	11
12	Improving Water Age in Distribution Systems by Optimal Valve Operation. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	7
13	Managing expert knowledge in water network expansion project implementation. IFAC-PapersOnLine, 2021, 54, 36-40.	0.5	4
14	Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems. Processes, 2020, 8, 980.	1.3	7
15	Optimal Placement of Pressure Sensors Using Fuzzy DEMATEL-Based Sensor Influence. Water (Switzerland), 2020, 12, 493.	1.2	19
16	Layout Optimization Process to Minimize the Cost of Energy of an Offshore Floating Hybrid Wind–Wave Farm. Processes, 2020, 8, 139.	1.3	15
17	Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems. Water Science and Technology: Water Supply, 2019, 19, 2338-2346.	1.0	14
18	Committee Machines for Hourly Water Demand Forecasting in Water Supply Systems. Mathematical Problems in Engineering, 2019, 2019, 1-11.	0.6	27

Bruno M Brentan

#	Article	IF	CITATIONS
19	Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework. Water (Switzerland), 2019, 11, 246.	1.2	3
20	Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location. Water (Switzerland), 2019, 11, 2279.	1.2	6
21	Hybrid SOM+k-Means clustering to improve planning, operation and management in water distribution systems. Environmental Modelling and Software, 2018, 106, 77-88.	1.9	35
22	Social Network Community Detection and Hybrid Optimization for Dividing Water Supply into District Metered Areas. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	1.3	26
23	Joint Operation of Pressure-Reducing Valves and Pumps for Improving the Efficiency of Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	1.3	27
24	Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks. Water (Switzerland), 2018, 10, 693.	1.2	14
25	Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 2017, 309, 532-541.	1.1	134
26	Selection and location of Pumps as Turbines substituting pressure reducing valves. Renewable Energy, 2017, 109, 392-405.	4.3	66
27	Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks. Water Resources Management, 2017, 31, 4339-4351.	1.9	29
28	Near Real Time Pump Optimization and Pressure Management. Procedia Engineering, 2017, 186, 666-675.	1.2	13
29	Social Network Community Detection for DMA Creation: Criteria Analysis through Multilevel Optimization. Mathematical Problems in Engineering, 2017, 2017, 1-12.	0.6	28
30	Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models. Mathematical Problems in Engineering, 2017, 2017, 1-10.	0.6	13
31	Annlise Correlacional das Variiveis Climmticas e Sociais na Previsso de Demanda em Tempo Real (Correlational Analysis of Weather and Social Variables in Real-Time Demand Forecasting). SSRN Electronic Journal, 0, , .	0.4	0
32	Optimal pressure management in water distribution networks through district metered area creation based on machine learning. Revista Brasileira De Recursos Hidricos, 0, 24, .	0.5	3
33	Multi-Objective and Multi-Criteria Analysis for Optimal Pump Scheduling in Water Systems. , 0, , .		3
34	Optimal pump selection for variable speed operation in water distribution network. Revista Brasileira De Recursos Hidricos, 0, 25, .	0.5	4
35	Optimal architecture for artificial neural networks as pressure estimator. Revista Brasileira De Recursos Hidricos, 0, 26, .	0.5	1