List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7475319/publications.pdf Version: 2024-02-01

YOUN-BAF KANC

#	Article	IF	CITATIONS
1	Role of liquid and solid particles in solid-liquid mixed fluxes on sulfur removal from molten iron under centrifugal stirring by an impeller. Powder Technology, 2022, 396, 1-12.	4.2	4
2	Thermodynamic Basis of Isothermal Carbothermic Reduction of Oxide in Liquid Steel for Simultaneous Analysis of Soluble/Insoluble Oxygen Contents in the Steel Specimens. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 1980-1988.	2.1	6
3	Inclusion Agglomeration on Ultra-Low C Liquid Steel Surface: Roles of Ti in the Steel and the Oxygen Potential. Metals and Materials International, 2022, 28, 3106-3119.	3.4	4
4	Simultaneous Analysis of Soluble and Insoluble Oxygen Contents in Al-Killed Steels of Various C Contents and Supersaturation Phenomena in the Steel. ISIJ International, 2022, 62, 1705-1714.	1.4	4
5	Suppressing initial clog deposits on inner surface of submerged entry nozzle refractory for casting liquid steel: Absorbing CO gas by CO absorbers. Journal of the European Ceramic Society, 2022, 42, 6275-6287.	5.7	4
6	Effect of Trace of Oxygen in Ar Gas on Initial Growth of Nozzle Clogging Deposits on SEN for Ti Added Ultra‣ow C Steel Casting. Steel Research International, 2022, 93, .	1.8	3
7	Evaporation of As and Sn from Liquid Iron: Experiments and a Kinetic Model during Top-Blown Oxygen Steelmaking Process. Materials, 2022, 15, 4771.	2.9	1
8	Dissolution Behavior of Sn in CaO–CaF2 Molten Flux and Its Distribution Ratio Between CaO–CaF2 Molten Flux and Liquid Iron. Jom, 2021, 73, 1080-1089.	1.9	5
9	Progress of Thermodynamic Modeling for Sulfide Dissolution in Molten Oxide Slags: Sulfide Capacity and Phase Diagram. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2859-2882.	2.1	12
10	Reoxidation of Al-Killed Ultra-Low C Steel by FetO in RH Slag: Experiment, Reaction Rate Model Development, and Mechanism Analysis. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 3032-3044.	2.1	9
11	An Attempt to Correlate Electrochemical Desulfurization of Molten Iron Using CaO–Al2O3–MgOsat. Molten Slag and Applied Electricity at 1673 K (1400 °C). Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2960-2970.	2.1	6
12	Simultaneous Analysis of Soluble and Insoluble Oxygen Contents in Steel Specimens Using Inert Gas Fusion Infrared Absorptiometry. ISIJ International, 2021, 61, 2464-2473.	1.4	12
13	Phase equilibria of Al2O3–TiO system under various oxygen partial pressure: Emphasis on stability of Al2TiO5–Ti3O5 pseudobrookite solid solution. Journal of the European Ceramic Society, 2021, 41, 7362-7374.	5.7	16
14	Mathematical Modeling of the Early Stage of Clogging of the SEN During Continuous Casting of Ti-ULC Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 4167-4178.	2.1	17
15	Dissolution kinetics of alumina in molten CaO–Al ₂ O ₃ –Fe <i>_t</i> O–MgO–SiO ₂ oxide representing theÂRH slag in steelmaking process. Journal of the American Ceramic Society, 2020, 103, 2210-2224	3.8	25
16	Reaction Between High Mn-High Al Steel and CaO-SiO\$\$_2\$\$-Type Molten Mold Flux: Retardation of \$\${{ext{Al}}_2} {{ext{O}}_3}\$\$ Accumulation at High Al Content \$\$([{ext{pct Al}}]_0\$\$ \$\$ge \$\$) Tj ETQqO	0 0.rgBT /(Oveglock 10 Tf
	Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 3067-3078.		
17	Critical evaluation and thermodynamic modeling of the Fe–P and Fe–C–P system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 70, 101795.	1.6	6
18	Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5351-5364.	2.2	16

#	Article	IF	CITATIONS
19	Growth of Initial Clog Deposits during Continuous Casting of Ti-ULC Steel – Formation and Reduction of the Initial Deposits at Nozzle/Steel Interface. ISIJ International, 2020, 60, 426-435.	1.4	18
20	The Uniqueness of a Correction to Interaction Parameter Formalism in a Thermodynamically Consistent Manner. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 795-804.	2.1	8
21	Kinetics of CO Gas Dissolution into Stirred Liquid Fe at 1823 K and Its Impact on Nozzle Clogging during Continuous Casting. ISIJ International, 2020, 60, 258-266.	1.4	11
22	Thermodynamic Modeling of Liquid Steel. ISIJ International, 2020, 60, 2717-2730.	1.4	8
23	A Reaction Between High Mn–High Al Steel and CaO-SiO2-Type Molten Mold Flux: Reduction of Additive Oxide Components in Mold Flux by Al in Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2077-2082.	2.1	10
24	Oxide Solubility Minimum in Liquid Fe-M-O Alloy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2942-2958.	2.1	4
25	Influence of Al/Ti Ratio in Ti-ULC Steel and Refractory Components of Submerged Entry Nozzle on Formation of Clogging Deposits. ISIJ International, 2019, 59, 749-758.	1.4	36
26	Evaporation of Cu, Sn, and S from Fe-C-Cu-Sn-S Liquid Alloys in the Temperature Range from 1513ÂK to 1873ÂK (1240°C to 1600°C). Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1089-1100.	2.1	5
27	Electrochemical Transfer of S Between Molten Steel and Molten Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1311-1321.	2.1	15
28	Development of a multicomponent reaction rate model coupling thermodynamics and kinetics for reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 61, 105-115.	1.6	19
29	Interfacial Reaction Between Ultra LowÂC Steel and Gas Generated from Refractory Material Used for Submerged Entry Nozzle for Continuous Casting. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2018, 163, 18-22.	1.0	15
30	Electrochemical Desulfurization of Molten Steel with Molten Slag: Reaction Rate and Current Efficiency. Journal of the Electrochemical Society, 2018, 165, E816-E825.	2.9	13
31	Oxide Stability Diagram of Liquid Steels – Construction and Utilization. ISIJ International, 2018, 58, 1371-1382.	1.4	12
32	Evaporation of S from Liquid Fe–C–S Alloy. ISIJ International, 2018, 58, 10-16.	1.4	7
33	A Reaction between High Mn–High Al Steel and CaO–SiO ₂ -Type Molten Mold Flux: Reaction Mechanism Change by High Al Content ([pct Al] ₀ = 5.2) in the Steel and Accumulation of Reaction Product at the Reaction Interface. ISIJ International, 2018, 58, 686-695.	1.4	29
34	On the Evaporation of S from Liquid Fe–C–S Alloy. Minerals, Metals and Materials Series, 2018, , 815-823.	0.4	0
35	Oxidation of Ti Added ULC Steel by CO Gas Simulating Interfacial Reaction between the Steel and SEN during Continuous Casting. ISIJ International, 2018, 58, 1257-1266.	1.4	29
36	Distribution of Alumina in Aluminum Prediction Based on Thermodynamic and Diffusion Analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2697-2700.	2.2	0

#	Article	IF	CITATIONS
37	Prediction of Phase Separation of Immiscible Ga-Tl Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3130-3136.	2.2	4
38	Critical Evaluations and Thermodynamic Optimizations of the MnO-Mn \$\$_{2}\$\$ 2 O \$\$_{3}\$\$ 3 -SiO \$\$_{2}\$\$ 2 and FeO-Fe \$\$_{2}\$\$ 2 O \$\$_{3}\$\$ 3 -MnO-Mn \$\$_{2}\$\$ 2 O \$\$_{3}\$\$ 3 -SiO \$\$_{2}\$\$ 2 Systems. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1721-1735.	2.1	6
39	Composites of copper and cast iron fabricated via the liquid: In the vicinity of the limits of strength in a non-deformed condition. Materials Characterization, 2017, 130, 260-269.	4.4	9
40	Thermodynamic Modeling of Fe–C–S Ternary System. ISIJ International, 2017, 57, 782-790.	1.4	14
41	Erratum to "Reassessment of Oxide Stability Diagram in the Fe–Al–Ti–O System―[ISIJ International, 57 (2017), No. 9, pp. 1665–1667]. ISIJ International, 2017, 57, 2269-2269.	1.4	6
42	Reassessment of Oxide Stability Diagram in the Fe–Al–Ti–O System. ISIJ International, 2017, 57, 1665-1667	⁷ .1.4	32
43	Regarding "Sulfide Capacity in Ladle Slag at Steelmaking Temperatures," C. Allertz, Du Sichen; MMTB 2015 December. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3241-3243.	2.1	2
44	Calculation of property diagram as a Zero-Phase Fraction line of auxiliary phase. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 55, 69-75.	1.6	2
45	Thermodynamic modeling of oxide phases in the Fe–Mn–O system. Journal of Physics and Chemistry of Solids, 2016, 98, 237-246.	4.0	15
46	Study on Oxide Inclusion Dissolution in Secondary Steelmaking Slags using High Temperature Confocal Scanning Laser Microscopy. Steel Research International, 2016, 87, 57-67.	1.8	46
47	In-situ X-ray fluoroscopic observation for motion of bubbles in liquid iron for correction of drag coefficient used in numerical simulation. Metals and Materials International, 2016, 22, 681-693.	3.4	2
48	Evaporation Mechanism of Cu from Liquid Fe Containing C and S. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2164-2176.	2.1	12
49	Thermodynamic Modeling of Oxide Phases in the Mn-O System. Metallurgical and Materials Transactions E, 2016, 3, 156-170.	0.5	2
50	Aluminum Deoxidation Equilibria in Liquid Iron: Part Ill—Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O System. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2837-2847.	2.1	27
51	Simultaneous Evaporation of Cu and Sn from Liquid Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2564-2570.	2.1	11
52	A Novel Technology to Develop a Nickel-Enriched Layer on Slab Surface by Utilizing NiO-Containing Synthetic Powder. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 779-787.	2.1	1
53	A Reaction Model to Simulate Composition Change of Mold Flux During Continuous Casting of High Al Steel. , 2016, , 271-277.		0
54	Modeling surface tension of multicomponent liquid steel using Modified Quasichemical Model and Constrained Gibbs Energy Minimization. Metals and Materials International, 2015, 21, 765-774.	3.4	7

#	Article	IF	CITATIONS
55	Reassessment of TiN(s)=Ti+N Equilibration in Liquid Iron. ISIJ International, 2015, 55, 2318-2324.	1.4	11
56	Desulfurization of Liquid Steel by Passing Steel Droplets through a Slag Layer. ISIJ International, 2015, 55, 1581-1590.	1.4	6
57	Evaporation Mechanism of Sn and SnS from Liquid Fe: Part I: Experiment and Adsorption of S on Reaction Site. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 250-258.	2.1	13
58	Aluminum Deoxidation Equilibria in Liquid Iron: Part II. Thermodynamic Modeling. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 2224-2233.	2.1	33
59	Relationship between surface tension and Gibbs energy, and application of Constrained Gibbs Energy Minimization. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 50, 23-31.	1.6	20
60	Calculation of surface tension using CALPHAD software as a Zero Phase Fraction line of "surface― phase. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 50, 105-112.	1.6	2
61	Evaporation Mechanism of Sn and SnS from Liquid Fe: Part II: Residual Site and Evaporation Kinetics via Sn(g) and SnS(g). Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 259-266.	2.1	11
62	Evaporation Mechanism of Sn and SnS from Liquid Fe: Part III. Effect of C on Sn Removal. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 267-277.	2.1	10
63	Compositional Evolution of Oxide Inclusions in Austenitic Stainless Steel during Continuous Casting. Steel Research International, 2015, 86, 284-292.	1.8	17
64	Development of thermodynamic database for high Mn–high Al steels: Phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 51, 89-103.	1.6	36
65	Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase. Journal of Phase Equilibria and Diffusion, 2015, 36, 453-470.	1.4	24
66	Aluminum Deoxidation Equilibria in Liquid Iron: Part I. Experimental. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1826-1836.	2.1	39
67	Erratum to "Desulfurization of Liquid Steel by Passing Steel Droplets through a Slag Layer―[ISIJ Int. 55(8): 1581–1590 (2015)]. ISIJ International, 2015, 55, 2272-2272.	1.4	0
68	Erratum to "Thermodynamic Assessment of MnO and FeO Activities in FeO–MnO–MgO–P2O5–SiO2(–CaO) Molten Slag―[ISIJ Int. 53(8): 1325–1333 (2013)]. ISIJ Interna 54, 1456-1456.	ational, 2	.01 4 ,
69	<i>In Situ</i> Observation of the Dissolution of <scp><scp>SiO</scp></scp> 2 Particles in <scp><scp>CaO</scp></scp> – <scp><scp>Al</scp></scp> ₂ <scp>Cscp>O</scp> Slags and Mathematical Analysis of its Dissolution Pattern. Journal of the American Ceramic Society, 2014 97 316-325	sub>– 3.8	<scp><scp>S</scp></scp>
70	Thermodynamic modeling and diffusion kinetic experiments of binary Mg–Gd and Mg–Y systems. Acta Materialia, 2014, 71, 164-175.	7.9	142
71	Phase equilibria and thermodynamics of Mn–C, Mn–Si, Si–C binary systems and Mn–Si–C ternary system by critical evaluation, combined with experiment and thermodynamic modeling. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 46, 92-102.	1.6	33
72	Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 45, 127-137.	1.6	48

#	Article	IF	CITATIONS
73	Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization. Acta Materialia, 2014, 79, 1-15.	7.9	53
74	Determination of Gibbs Free Energy of Formation of MnV2O4 Solid Solution at 1823ÂK (1550°C). Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 131-141.	2.1	4
75	Microstructural evolution of a focused ion beam fabricated Mg nanopillar at high temperatures: Defect annihilation and sublimation. Scripta Materialia, 2014, 86, 44-47.	5.2	7
76	Critical evaluation and thermodynamic optimization of Mg–Ga system and effect of low pressure on phase equilibria. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 46, 168-175.	1.6	10
77	Decarburization of Molten Fe–C Droplet: Numerical Simulation and Experimental Validation. ISIJ International, 2014, 54, 2559-2568.	1.4	4
78	Thermodynamic Optimization of Mn-Si-C System. , 2014, , 641-649.		0
79	A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 299-308.	2.1	93
80	A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 309-316.	2.1	81
81	The shape of liquid miscibility gaps and short-range-order. Journal of Chemical Thermodynamics, 2013, 60, 19-24.	2.0	7
82	Transmission electron microscopy and thermodynamic studies of CaO-added AZ31 Mg alloys. Acta Materialia, 2013, 61, 3267-3277.	7.9	55
83	Experimental investigation of phase equilibria and thermodynamic modeling of the CaO–Al2O3–CaS and the CaO–SiO2–CaS oxysulfide systems. Acta Materialia, 2013, 61, 683-696.	7.9	14
84	Thermodynamic Assessment of MnO and FeO Activities in FeO–MnO–MgO–P2O5–SiO2(–CaO) Molter Slag. ISIJ International, 2013, 53, 1325-1333.	¹ 1.4	11
85	Thermodynamics of the MnO–FeO–MnS–FeS–SiO2 System at SiO2 Saturation under Reducing Condition: Immiscibility in the Liquid Phase. ISIJ International, 2013, 53, 751-760.	1.4	7
86	Activity Measurement of the CaS–MnS Sulfide Solid Solution and Thermodynamic Modeling of the CaO–MnO–Al2O3–CaS–MnS–Al2S3 System. ISIJ International, 2013, 53, 2132-2141.	1.4	13
87	Feasibility of BF Hearth Protection Using Spinel Formation by Slag Composition Control. ISIJ International, 2013, 53, 1779-1785.	1.4	13
88	Influence of Partial Pressure of Sulfur and Oxygen on Distribution of Fe and Mn between Liquid Fe-Mn Oxysulfide and Molten Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1069-1077.	2.1	10
89	Thermodynamic evaluations and optimizations of binary Mg-light Rare Earth (La, Ce, Pr, Nd, Sm) systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 38, 100-116.	1.6	64
90	Numerical Analysis of Surface Tension Gradient Effect on the Behavior of Gas Bubbles at the Solid/Liquid Interface of Steel. ISIJ International, 2012, 52, 1730-1739.	1.4	13

#	Article	IF	CITATIONS
91	Phase Equilibria in the <scp><scp>Mn</scp></scp> – <scp><scp>V</scp>–<scp><scp>O</scp></scp> System Near <scp><scp>MnO</scp></scp>–<scp>V</scp></scp> ₂ <scp>C</scp> _{3Isopleth. Journal of the American Ceramic Society, 2012, 95, 2059-2064.}	3.8 ub>	6
92	Critical evaluation and thermodynamic optimization of the VO–VO2.5 system. Journal of the European Ceramic Society, 2012, 32, 3187-3198.	5.7	65
93	Comment on "Thermodynamic modelling of an Al2O3–MnO system using the ionic model―by A.B. Farina and F.B. Neto. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 255-257.	1.6	5
94	Thermodynamic evaluation and optimization of Al–La, Al–Ce, Al–Pr, Al–Nd and Al–Sm systems using the Modified Quasichemical Model for liquids. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 30-41.	1.6	66
95	The Role of Iron Oxide Bearing Molten Slag in Iron Melting Process for the Direct Contact Carburization. ISIJ International, 2011, 51, 166-168.	1.4	14
96	Sulfide Capacity of the CaO–SiO2–MnO Slag at 1873 K. ISIJ International, 2011, 51, 1375-1382.	1.4	49
97	Thermodynamics of MnO-SiO2-Al2O3-MnS Liquid Oxysulfide: Experimental and Thermodynamic Modeling. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 535-545.	2.1	14
98	On the Dissolution Behavior of Sulfur in Ternary Silicate Slags. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 1211-1217.	2.1	42
99	In situ observation of the dissolution phenomena of SiC particle in CaO–SiO2–MnO slag. Journal of the European Ceramic Society, 2010, 30, 3181-3186.	5.7	53
100	Thermodynamic Analysis of Mn-depleted Zone Near Ti Oxide Inclusions for Intragranular Nucleation of Ferrite in Steel. ISIJ International, 2010, 50, 501-508.	1.4	46
101	Comment on "Thermodynamic description of the Hg–Te system―[Journal of Alloys and Compounds 494 (1–2) (2010) 102–108]. Journal of Alloys and Compounds, 2010, 505, 483-485.	5.5	3
102	Modeling short-range ordering in liquids: The Mg–Al–Sn system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 180-188.	1.6	51
103	Critical evaluations and thermodynamic optimizations of the Mn–S and the Fe–Mn–S systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 232-244.	1.6	13
104	Thermodynamic evaluation and optimization of Al–Cd, Al–Tb, Al–Dy, Al–Ho and Al–Er systems using a Modified Quasichemical Model for the liquid. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 456-466.	1.6	64
105	Thermodynamic Study for P Reduction from Slag to Molten Steel by using the Microwave Heating. Korean Journal of Materials Research, 2010, 20, 42-46.	0.2	6
106	Experimental Investigations of Phase Equilibria of MnS Containing Sub-systems in the MnO–SiO2–Al2O3–MnS System. ISIJ International, 2009, 49, 1490-1497.	1.4	14
107	Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems. International Journ of Materials Research, 2009, 100, 208-217.	al 0.3	30
108	Thermodynamic and volumetric databases and software for magnesium alloys. Jom, 2009, 61, 75-82.	1.9	24

#	Article	IF	CITATIONS
109	Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 979-994.	2.1	79
110	Thermodynamic Database for the Al-Ca-Co-Cr-Fe-Mg-Mn-Ni-Si-O-P-S System and Applications in Ferrous Process Metallurgy. Journal of Phase Equilibria and Diffusion, 2009, 30, 443-461.	1.4	28
111	Thermodynamic assessment of the Ca–Zn, Sr–Zn, Y–Zn and Ce–Zn systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 423-431.	1.6	45
112	Critical evaluation and thermodynamic optimization of the Al–Ce, Al–Y, Al–Sc and Mg–Sc binary systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 413-422.	1.6	113
113	Thermodynamic assessment of the Si–Zn, Mn–Si, Mg–Si–Zn and Mg–Mn–Si systems. Calphad: Com Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 470-477.	puter 1.6	34
114	Modeling short-range ordering in solutions. International Journal of Materials Research, 2007, 98, 907-917.	0.3	73
115	Thermodynamic Database Development of the Mg-Ce-Mn-Y System for Mg Alloy Design. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1231-1243.	2.2	22
116	Critical Evaluation and Thermodynamic Optimization of the Binary Systems in the Mg-Ce-Mn-Y System. Journal of Phase Equilibria and Diffusion, 2007, 28, 342-354.	1.4	48
117	Critical thermodynamic evaluation and optimization of the MnO–" TiO2 â€â€"" Ti2O3 ―system. Calpha Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 235-247.	ad:.6	27
118	Critical thermodynamic evaluation and optimization of the MnO–SiO2–" TiO2 â€â€"" Ti2O3 ―syster Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 226-234.	n. 1.6	15
119	Effect of ferrosilicon addition on the composition of inclusions in 16Cr-14Ni-Si stainless steel melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2006, 37, 791-797.	2.1	72
120	Experimental Study of Phase Equilibria in the MnO-"TiO2"-"Ti2O3" System. ISIJ International, 2005, 45, 1543-1551.	1.4	25
121	Practical application of thermodynamics to inclusions engineering in steel. Journal of Physics and Chemistry of Solids, 2005, 66, 219-225.	4.0	21
122	Dissolution behavior of alumina in mold fluxes for steel continuous casting. Metals and Materials International, 2005, 11, 183-190.	3.4	20
123	Experimental Study of Phase Equilibria in the MnO-SiO2-"TiO2"-"Ti2O3" System. ISIJ International, 2005, 45, 1552-1560.	1.4	22
124	Critical Thermodynamic Evaluation and Optimization of the CaO-MnO-SiO2 and CaO-MnO-Al2O3 Systems. ISIJ International, 2004, 44, 965-974.	1.4	42
125	Thermodynamic evaluation and optimization of the MnO-Al2O3 and MnO-Al2O3-SiO2 systems and applications to inclusion engineering. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2004, 35, 259-268.	2.1	72
126	Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Materialia, 2004, 52, 507-519.	7.9	73

#	Article	IF	CITATIONS
127	Inclusions Chemistry for Mn/Si Deoxidized Steels: Thermodynamic Predictions and Experimental Confirmations. ISIJ International, 2004, 44, 1006-1015.	1.4	97
128	Phase Equilibria and Thermodynamic Properties of the CaO-MnO-Al2O3-SiO2 System by Critical Evaluation, Modeling and Experiment. ISIJ International, 2004, 44, 975-983.	1.4	42
129	Thermodynamic study of MnO-SiO2-Al2O3 slag system: Liquidus lines and activities of MnO at 1823 K. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 915-920.	2.1	19
130	Thermodynamic Optimization of Mn-Si-C System. , 0, , 641-649.		0

Thermodynamic Optimization of Mn-Si-C System. , 0, , 641-649. 130