Laura De Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7475100/publications.pdf Version: 2024-02-01

	109137	168136
3,534	35	53
citations	h-index	g-index
122	122	3809
docs citations	times ranked	citing authors
	citations 122	3,534 35 citations h-index 122 122

#	Article	IF	CITATIONS
1	Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1793-1796.	1.0	214
2	Pharmacophore-Based Design of HIV-1 Integrase Strand-Transfer Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 7084-7088.	2.9	160
3	Design, Synthesis, Structureâ^'Activity Relationships, and Molecular Modeling Studies of 2,3-Diaryl-1,3-thiazolidin-4-ones as Potent Anti-HIV Agents. Journal of Medicinal Chemistry, 2002, 45, 5410-5413.	2.9	151
4	Design, Synthesis, and Biological Evaluation of a Series of 2-Hydroxyisoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones as Dual Inhibitors of Human Immunodeficiency Virus Type 1 Integrase and the Reverse Transcriptase RNase H Domain. Journal of Medicinal Chemistry, 2008, 51, 7717-7730.	2.9	115
5	Graphene Quantum Dots Based Systems As HIV Inhibitors. Bioconjugate Chemistry, 2018, 29, 3084-3093.	1.8	111
6	Pharmacophoreâ€Based Discovery of Smallâ€Molecule Inhibitors of Protein–Protein Interactions between HIVâ€1 Integrase and Cellular Cofactor LEDGF/p75. ChemMedChem, 2009, 4, 1311-1316.	1.6	98
7	Discovery of a Novel and Highly Potent Noncompetitive AMPA Receptor Antagonist. Journal of Medicinal Chemistry, 2003, 46, 197-200.	2.9	80
8	AMPA Receptor Antagonists as Potential Anticonvulsant Drugs. Current Topics in Medicinal Chemistry, 2005, 5, 31-42.	1.0	70
9	Discovery of novel benzimidazolones as potent non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1956-1960.	1.0	70
10	2-Hydroxyisoquinoline-1,3(2H,4H)-diones as inhibitors of HIV-1 integrase and reverse transcriptase RNase H domain: Influence of the alkylation of position 4. European Journal of Medicinal Chemistry, 2011, 46, 535-546.	2.6	60
11	Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorganic and Medicinal Chemistry, 2010, 18, 7515-7521.	1.4	59
12	Computational Strategies in Discovering Novel Non-nucleoside Inhibitors of HIV-1 RT. Journal of Medicinal Chemistry, 2005, 48, 3433-3437.	2.9	58
13	Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases. European Journal of Medicinal Chemistry, 2018, 143, 276-282.	2.6	58
14	Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. European Journal of Medicinal Chemistry, 2019, 178, 380-389.	2.6	57
15	Structure-Based Pharmacophore Identification of New Chemical Scaffolds as Non-Nucleoside Reverse Transcriptase Inhibitors. Journal of Chemical Information and Modeling, 2007, 47, 557-562.	2.5	56
16	Anti-HIV agents: design and discovery of new potent RT inhibitors. Il Farmaco, 2003, 58, 259-263.	0.9	55
17	Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon, 2015, 82, 548-561.	5.4	55
18	Analysis of the full-length integrase–DNA complex by a modified approach for DNA docking. Biochemical and Biophysical Research Communications, 2003, 310, 1083-1088.	1.0	54

#	Article	IF	CITATIONS
19	Inducedâ€Fit Docking Approach Provides Insight into the Binding Mode and Mechanism of Action of HIVâ€1 Integrase Inhibitors. ChemMedChem, 2009, 4, 1446-1456.	1.6	54
20	ldentification of 3,4-Dihydroisoquinoline-2(1 <i>H</i>)-sulfonamides as Potent Carbonic Anhydrase Inhibitors: Synthesis, Biological Evaluation, and Enzymeâ^'Ligand X-ray Studies. Journal of Medicinal Chemistry, 2010, 53, 2401-2408.	2.9	53
21	Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. European Journal of Medicinal Chemistry, 2014, 71, 105-111.	2.6	50
22	N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Scientific Reports, 2016, 6, 31500.	1.6	49
23	Efficient 3D Database Screening for Novel HIV-1 IN Inhibitors. Journal of Chemical Information and Computer Sciences, 2004, 44, 1450-1455.	2.8	44
24	Design and synthesis of N1-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 1459-1467.	1.4	44
25	Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease. Journal of Biological Inorganic Chemistry, 2015, 20, 1109-1121.	1.1	44
26	Novel N1-substituted 1,3-dihydro-2H-benzimidazol-2-ones as potent non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 7429-7435.	1.4	43
27	Design, synthesis, and structure–activity relationships of 1,3-dihydrobenzimidazol-2-one analogues as anti-HIV agents. Bioorganic and Medicinal Chemistry, 2009, 17, 5962-5967.	1.4	42
28	Docking Studies on a New Human Immodeficiency Virus Integraseâ^'Mgâ^'DNA Complex: Phenyl Ring Exploration and Synthesis of 1H-Benzylindole Derivatives through Fluorine Substitutions. Journal of Medicinal Chemistry, 2009, 52, 569-573.	2.9	40
29	Probing Molecular Interactions between Human Carbonic Anhydrases (hCAs) and a Novel Class of Benzenesulfonamides. Journal of Medicinal Chemistry, 2017, 60, 4316-4326.	2.9	40
30	Pharmacophore Modeling as an Efficient Tool in the Discovery of Novel Noncompetitive AMPA Receptor Antagonists. Journal of Chemical Information and Computer Sciences, 2003, 43, 651-655.	2.8	39
31	A refined pharmacophore model for HIV-1 integrase inhibitors: Optimization of potency in the 1H-benzylindole series. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2891-2895.	1.0	38
32	Chemical exploration of 4-(4-fluorobenzyl)piperidine fragment for the development of new tyrosinase inhibitors. European Journal of Medicinal Chemistry, 2017, 125, 992-1001.	2.6	38
33	Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS. Retrovirology, 2007, 4, 79.	0.9	37
34	Computational Studies to Discover a New NR2B/NMDA Receptor Antagonist and Evaluation of Pharmacological Profile. ChemMedChem, 2008, 3, 1539-1548.	1.6	37
35	Molecular dynamics studies of the full-length integrase–DNA complex. Biochemical and Biophysical Research Communications, 2005, 336, 1010-1016.	1.0	36
36	Novel 1,3-dihydro-benzimidazol-2-ones and their analogues as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 1702-1710.	1.4	36

#	Article	IF	CITATIONS
37	Inâ€Vivo Evaluation of Selective Carbonic Anhydrase Inhibitors as Potential Anticonvulsant Agents. ChemMedChem, 2016, 11, 1812-1818.	1.6	36
38	Binding Mode Prediction of Strand Transfer HIV-1 Integrase Inhibitors Using Tn5 Transposase as a Plausible Surrogate Model for HIV-1 Integrase. Journal of Medicinal Chemistry, 2006, 49, 3994-3997.	2.9	35
39	Inhibitors of the Interactions between HIVâ€1 IN and the Cofactor LEDGF/p75. ChemMedChem, 2011, 6, 1184-1191.	1.6	35
40	HIV-1 integrase strand-transfer inhibitors: Design, synthesis and molecular modeling investigation. European Journal of Medicinal Chemistry, 2011, 46, 756-764.	2.6	35
41	Development of 3-substituted-1H-indole derivatives as NR2B/NMDA receptor antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 1640-1647.	1.4	34
42	Novel Potent Anticonvulsant Agent Containing a Tetrahydroisoquinoline Skeleton. Journal of Medicinal Chemistry, 2006, 49, 5618-5622.	2.9	32
43	Synthesis and evaluation of pharmacological profile of 1-aryl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamides. Bioorganic and Medicinal Chemistry, 2009, 17, 3659-3664.	1.4	32
44	Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety. European Journal of Medicinal Chemistry, 2019, 163, 443-452.	2.6	31
45	Modeling of the Intestinal Peptide Transporter hPepT1 and Analysis of Its Transport Capacities by Docking and Pharmacophore Mapping. ChemMedChem, 2008, 3, 1913-1921.	1.6	28
46	The link between the AMPK/SIRT1 axis and a flavonoidâ€rich extract of <scp> <i>Citrus bergamia</i> </scp> juice: A cellâ€free, in silico, and in vitro study. Phytotherapy Research, 2019, 33, 1805-1814.	2.8	28
47	New 4-[(1-Benzyl-1H-indol-3-yl)carbonyl]-3-hydroxyfuran-2(5H)-ones, β-Diketo Acid Analogs as HIV-1 Integrase Inhibitors. Archiv Der Pharmazie, 2007, 340, 292-298.	2.1	27
48	Synthesis, resolution, stereochemistry, and molecular modeling of (R)- and (S)-2-acetyl-1-(4′-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline AMPAR antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 5417-5423.	1.4	27
49	Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorganic and Medicinal Chemistry, 2018, 26, 661-674.	1.4	26
50	Targeting Tyrosinase: Development and Structural Insights of Novel Inhibitors Bearing Arylpiperidine and Arylpiperazine Fragments. Journal of Medicinal Chemistry, 2018, 61, 3908-3917.	2.9	25
51	Synthesis, Structure–Activity Relationship Studies, and X-ray Crystallographic Analysis of Arylsulfonamides as Potent Carbonic Anhydrase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 3891-3899.	2.9	24
52	Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms. European Journal of Medicinal Chemistry, 2015, 102, 223-232.	2.6	24
53	4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Research, 2011, 92, 102-107.	1.9	23
54	Synthesis, modelling and biological characterization of 3-substituted-1H-indoles as ligands of GluN2B-containing N-methyl-d-aspartate receptors. Bioorganic and Medicinal Chemistry, 2014, 22, 1040-1048.	1.4	22

#	Article	IF	CITATIONS
55	Discovery of benzimidazoleâ€based <i>Leishmania mexicana</i> cysteine protease <scp>CPB</scp> 2.8Δ <scp>CTE</scp> inhibitors as potential therapeutics for leishmaniasis. Chemical Biology and Drug Design, 2018, 92, 1585-1596.	1.5	22
56	Merging lithium carbenoid homologation and enzymatic reduction: A combinative approach to the HIV-protease inhibitor Nelfinavir. Tetrahedron, 2018, 74, 2211-2217.	1.0	21
57	Rational design of small molecules able to inhibit α-synuclein amyloid aggregation for the treatment of Parkinson's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1727-1735.	2.5	20
58	QSAR Study of Anticonvulsant Negative Allosteric Modulators of the AMPA Receptor. Journal of Medicinal Chemistry, 2004, 47, 1860-1863.	2.9	19
59	Synthesis and Biological Characterization of 3-Substituted-1 <i>H</i> -indoles as Ligands of GluN2B-Containing <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors. Journal of Medicinal Chemistry, 2011, 54, 8702-8706.	2.9	19
60	3D Pharmacophore Models for 1,2,3,4-Tetrahydroisoquinoline Derivatives Acting as Anticonvulsant Agents. Archiv Der Pharmazie, 2006, 339, 388-400.	2.1	18
61	Synthesis and biological profile of new 1,2,3,4-tetrahydroisoquinolines as selective carbonic anhydrase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 7003-7007.	1.4	18
62	Insight into the Fundamental Interactions between LEDGF Binding Site Inhibitors and Integrase Combining Docking and Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2012, 52, 3245-3254.	2.5	18
63	Cinnamic acid derivatives linked to arylpiperazines as novel potent inhibitors of tyrosinase activity and melanin synthesis. European Journal of Medicinal Chemistry, 2022, 231, 114147.	2.6	18
64	Preclinical Evaluation of 1H-Benzylindole Derivatives as Novel Human Immunodeficiency Virus Integrase Strand Transfer Inhibitors. Antimicrobial Agents and Chemotherapy, 2008, 52, 2861-2869.	1.4	17
65	Diketoacid chelating ligands as dual inhibitors of HIV-1 integration process. European Journal of Medicinal Chemistry, 2014, 78, 425-430.	2.6	17
66	A new potential approach to block HIV-1 replication via protein–protein interaction and strand-transfer inhibition. Bioorganic and Medicinal Chemistry, 2014, 22, 2269-2279.	1.4	17
67	Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl)piperazin-1-yl moiety. Bioorganic and Medicinal Chemistry, 2020, 28, 115497.	1.4	17
68	Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode. Biochemical and Biophysical Research Communications, 2007, 363, 554-560.	1.0	15
69	New chloro,fluorobenzylindole derivatives as integrase strand-transfer inhibitors (INSTIs) and their mode of action. Bioorganic and Medicinal Chemistry, 2010, 18, 5510-5518.	1.4	15
70	Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2013, 21, 4575-4580.	1.4	15
71	4â€Fluorobenzylpiperazine ontaining Derivatives as Efficient Inhibitors of Mushroom Tyrosinase. ChemMedChem, 2020, 15, 1757-1764.	1.6	15
72	Improvement of water solubility of non-competitive AMPA receptor antagonists by complexation with β-cyclodextrin. Bioorganic and Medicinal Chemistry, 2008, 16, 8706-8712.	1.4	14

#	Article	IF	CITATIONS
73	Searching for indole derivatives as potential mushroom tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1-6.	2.5	14
74	Searching for novel N 1 -substituted benzimidazol-2-ones as non-nucleoside HIV-1 RT inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 3861-3870.	1.4	14
75	A Combination of Pharmacophore and Dockingâ€based Virtual Screening to Discover new Tyrosinase Inhibitors. Molecular Informatics, 2020, 39, e1900054.	1.4	14
76	Combined Strategies for the Discovery of Ionotropic Glutamate Receptor Antagonists. ChemMedChem, 2009, 4, 917-922.	1.6	13
77	Glutamatergic Neurotransmission As Molecular Target of New Anticonvulsants. Current Topics in Medicinal Chemistry, 2012, 12, 971-993.	1.0	13
78	New scaffolds of natural origin as Integrase–LEDGF/p75 interaction inhibitors: Virtual screening and activity assays. European Journal of Medicinal Chemistry, 2013, 68, 405-411.	2.6	13
79	Binding modes of noncompetitive AMPA antagonists: a computational approach. Il Farmaco, 2003, 58, 107-113.	0.9	12
80	Synthesis and anticonvulsant evaluation of N-substituted isoquinoline AMPA receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 2379-2384.	1.4	12
81	Synthesis and Structure-Active Relationship of 1-Aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline Anticonvulsants. Chemical and Pharmaceutical Bulletin, 2010, 58, 1602-1605.	0.6	12
82	Fragment hopping approach directed at design of HIV IN-LEDGF/p75 interaction inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 1002-1009.	2.5	12
83	Synthesis and anticonvulsant properties of 1,2,3,4-tetrahydroisoquinolin-1-ones. Arkivoc, 2004, 2004, 170-180.	0.3	12
84	New trends in the development of AMPA receptor antagonists. Expert Opinion on Therapeutic Patents, 2004, 14, 1199-1213.	2.4	11
85	Computational and synthetic approaches for developing Lavendustin B derivatives as allosteric inhibitors of HIV-1 integrase. European Journal of Medicinal Chemistry, 2016, 123, 673-683.	2.6	10
86	Inhibition of HIV-1 RT activity by a new series of 3-(1,3,4-thiadiazol-2-yl)thiazolidin-4-one derivatives. Bioorganic and Medicinal Chemistry, 2020, 28, 115431.	1.4	10
87	Synthesis of new pyridazine derivatives as potential antiâ€HIVâ€1 agents. Journal of Heterocyclic Chemistry, 2009, 46, 1420-1424.	1.4	9
88	Synthesis and Biological Characterization of 3-Substituted 1 <i>H</i> -Indoles as Ligands of GluN2B-Containing <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors. Part 2. Journal of Medicinal Chemistry, 2012, 55, 10532-10539.	2.9	9
89	Structure-guided design of new indoles as negative allosteric modulators (NAMs) of N-methyl-d-aspartate receptor (NMDAR) containing GluN2B subunit. Bioorganic and Medicinal Chemistry, 2016, 24, 1513-1519.	1.4	9
90	Identification of influenza PA-Nter endonuclease inhibitors using pharmacophore- and docking-based virtual screening. Bioorganic and Medicinal Chemistry, 2018, 26, 4544-4550.	1.4	9

#	Article	IF	CITATIONS
91	Seeking new approach for therapeutic treatment of cholera disease via inhibition of bacterial carbonic anhydrases: experimental and theoretical studies for sixteen benzenesulfonamide derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1186-1192.	2.5	9
92	In Silico Strategy for Targeting the mTOR Kinase at Rapamycin Binding Site by Small Molecules. Molecules, 2021, 26, 1103.	1.7	9
93	Evaluation of 4â€(4â€Fluorobenzyl)piperazinâ€1â€yl]â€Based Compounds as Competitive Tyrosinase Inhibitors Endowed with Antimelanogenic Effects. ChemMedChem, 2021, 16, 3083-3093.	1.6	9
94	Discovery of Neuroprotective Agents Based on a 5-(4-Pyridinyl)-1,2,4-triazole Scaffold. ACS Chemical Neuroscience, 2022, 13, 581-586.	1.7	9
95	From NMDA receptor antagonists to discovery of selective $\ddot{l}f2$ receptor ligands. Bioorganic and Medicinal Chemistry, 2014, 22, 393-397.	1.4	8
96	Targeting CluN2Bâ€Containing <i>N</i> â€Methylâ€ <scp>D</scp> â€aspartate Receptors: Design, Synthesis, and Binding Affinity Evaluation of Novel 3â€Substituted Indoles. Archiv Der Pharmazie, 2014, 347, 533-539.	2.1	8
97	Synthesis and biological evaluation of novel antiviral agents as protein–protein interaction inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 237-242.	2.5	8
98	In Silico-Guided Identification of New Potent Inhibitors of Carbonic Anhydrases Expressed in <i>Vibrio cholerae</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2294-2299.	1.3	8
99	Fragmental Modeling of Human Glutamate Transporter EAAT1 and Analysis of its Binding Modes by Docking and Pharmacophore Mapping. ChemMedChem, 2008, 3, 79-90.	1.6	7
100	Microwave Assisted Organic Synthesis (MAOS) of Small Molecules as Potential HIV-1 Integrase Inhibitors. Molecules, 2011, 16, 6858-6870.	1.7	7
101	Structural Modification of Diketo Acid Portion in 1H-Benzylindole Derivatives HIV-1 Integrase Inhibitors. Heterocycles, 2009, 78, 947.	0.4	7
102	Fragmental modeling of hPepT2 and analysis of its binding features by docking studies and pharmacophore mapping. Bioorganic and Medicinal Chemistry, 2011, 19, 4544-4551.	1.4	6
103	Rational Design, Synthesis and Evaluation of Coumarin Derivatives as Proteinâ€protein Interaction Inhibitors. Molecular Informatics, 2016, 35, 460-473.	1.4	6
104	Looking toward the Rim of the Active Site Cavity of Druggable Human Carbonic Anhydrase Isoforms. ACS Medicinal Chemistry Letters, 2020, 11, 1000-1005.	1.3	6
105	Synthesis, computational studies and assessment of <i>inÂvitro</i> inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1442-1449.	2.5	6
106	4â€ 5 ulfamoylphenylalkylamides as Inhibitors of Carbonic Anhydrases Expressed in <i>Vibrio cholerae</i> . ChemMedChem, 2021, 16, 3787-3794.	1.6	5
107	Optimization of rhodanine scaffold for the development of protein–protein interaction inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 3208-3214.	1.4	4
108	In Silico Identification of Potential Druggable Binding Sites on CIN85 SH3 Domain. International Journal of Molecular Sciences, 2021, 22, 534.	1.8	4

#	Article	IF	CITATIONS
109	In Silico Insights towards the Identification of SARS-CoV-2 NSP13 Helicase Druggable Pockets. Biomolecules, 2022, 12, 482.	1.8	4
110	Synthesis and biological evaluation of sulfonamideâ€based compounds as inhibitors of carbonic anhydrase from <i>Vibrio cholerae</i> . Archiv Der Pharmazie, 2022, 355, .	2.1	3
111	Design, synthesis and biochemical evaluation of novel carbonic anhydrase inhibitors triggered by structural knowledge on hCA VII. Bioorganic and Medicinal Chemistry, 2021, 44, 116279.	1.4	2
112	<i>N</i> â€substituted isoquinoline derivatives as potential AChE inhibitors. Journal of Heterocyclic Chemistry, 2010, 47, 54-62.	1.4	1
113	Simulated human digestion of N1-aryl-2-arylthioacetamidobenzimidazoles and their activity against Herpes-simplex virus 1 in vitro. PLoS ONE, 2019, 14, e0216384.	1.1	1
114	Exploring Molecular Contacts of MUC1 at CIN85 Binding Interface to Address Future Drug Design Efforts. International Journal of Molecular Sciences, 2021, 22, 2208.	1.8	1
115	The In Vitro Potential of 1-(1H-indol-3-yl) Derivatives against Candida spp. and Aspergillus niger as Tyrosinase Inhibitors. Microorganisms, 2021, 9, 2070.	1.6	1
116	Pharmacophore Modeling as an Efficient Tool in the Discovery of Novel Noncompetitive AMPA Receptor Antagonists ChemInform, 2003, 34, no.	0.1	0
117	6-Chloro-1-(3,5-dimethylphenylsulfonyl)-1H-benzimidazol-2(3H)-one. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o159-o159.	0.2	0