J T Freymueller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7474829/publications.pdf Version: 2024-02-01

		34105	40979
197	10,391	52	93
papers	citations	h-index	g-index
213	213	213	5901
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cascading rupture of a megathrust. Science Advances, 2022, 8, eabm4131.	10.3	25
2	Presentâ€Day Strikeâ€Slip Faulting and Thrusting of the Kepingtage Foldâ€andâ€Thrust Belt in Southern Tianshan: Constraints From GPS Observations. Geophysical Research Letters, 2022, 49, .	4.0	5
3	Quantifying mass flows at Mt. Cleveland, Alaska between 2001 and 2020 using satellite photogrammetry. Journal of Volcanology and Geothermal Research, 2022, 429, 107614.	2.1	1
4	Stress Promotion of the 1958 M _w â^¼7.8 Fairweather Fault Earthquake and Others in Southeast Alaska by Glacial Isostatic Adjustment and Interâ€earthquake Stress Transfer. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020411.	3.4	5
5	GPS, Tectonic Geodesy. Encyclopedia of Earth Sciences Series, 2021, , 558-578.	0.1	1
6	Geodesy. , 2021, , 719-735.		0
7	New Constraints on Slip Deficit on the Aleutian Megathrust and Inflation at Mt. Veniaminof, Alaska From Repeat GPS Measurements. Geophysical Research Letters, 2021, 48, e2020GL091787.	4.0	25
8	Postseismic Deformation due to the 2012 <i>M</i> _w 7.8 Haida Gwaii and 2013 <i>M</i> _w 7.5 Craig Earthquakes and its Implications for Regional Rheological Structure. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020197.	3.4	9
9	AutoCoulomb: An Automated Configurable Program to Calculate Coulomb Stress Changes on Receiver Faults with Any Orientation and its Application to the 2020 MwÂ7.8 Simeonof Island, Alaska, Earthquake. Seismological Research Letters, 2021, 92, 2591-2609.	1.9	8
10	Constraints on the Slip Distribution of the 1938 M _W 8.3 Alaska Peninsula Earthquake From Tsunami Modeling. Geophysical Research Letters, 2021, 48, e2021GL092812.	4.0	17
11	Multidisciplinary Constraints on Magma Compressibility, the Preâ€Eruptive Exsolved Volatile Fraction, and the H ₂ 0/CO ₂ Molar Ratio for the 2006 Augustine Eruption, Alaska. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009911.	2.5	10
12	Evidence for asthenospheric flow rotation in northwest Canada: insights from shear wave splitting. Geophysical Journal International, 2021, 228, 1780-1792.	2.4	3
13	Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2021, 2, 40-58.	29.7	118
14	The deep Shumagin gap filled: Kinematic rupture model and slip budget analysis of the 2020 Mw 7.8 Simeonof earthquake constrained by GNSS, global seismic waveforms, and floating InSAR. Earth and Planetary Science Letters, 2021, 576, 117241.	4.4	23
15	The Impact of a 3â€D Earth Structure on Glacial Isostatic Adjustment in Southeast Alaska Following the Little Ice Age. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022312.	3.4	5
16	Glacially Induced Faulting in Alaska. , 2021, , 353-365.		2
17	Spatio-temporal variations of afterslip and viscoelastic relaxation following the Mw 7.8 Gorkha (Nepal) earthquake. Earth and Planetary Science Letters, 2020, 532, 116031.	4.4	35
18	A Block Model of Presentâ€Day Kinematics of Alaska and Western Canada. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018378.	3.4	43

#	Article	IF	CITATIONS
19	Decadal Viscoelastic Postseismic Deformation of the 1964 Mw9.2 Alaska Earthquake. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019649.	3.4	10
20	Detection and Assessment of a Large and Potentially Tsunamigenic Periglacial Landslide in Barry Arm, Alaska. Geophysical Research Letters, 2020, 47, e2020GL089800.	4.0	30
21	A 25‥ear History of Volcano Magma Supply in the East Central Aleutian Arc, Alaska. Geophysical Research Letters, 2020, 47, e2020GL088388.	4.0	6
22	Characterization of the 2008 Phreatomagmatic Eruption of Okmok From ArcticDEM and InSAR: Deposition, Erosion, and Deformation. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018977.	3.4	3
23	Nearâ€Field Modeling of the 1964 Alaska Tsunami: The Role of Splay Faults and Horizontal Displacements. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019620.	3.4	14
24	The Mackenzie Mountains EarthScope Project: Studying Active Deformation in the Northern North American Cordillera from Margin to Craton. Seismological Research Letters, 2020, 91, 521-532.	1.9	10
25	Modeling the Posteruptive Deformation at Okmok Based on the GPS and InSAR Time Series: Changes in the Shallow Magma Storage System. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017801.	3.4	14
26	Understanding of Contemporary Regional Sea‣evel Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	23.0	74
27	GPS, Tectonic Geodesy. Encyclopedia of Earth Sciences Series, 2020, , 1-21.	0.1	1
28	Millimeter-level ultra-long period multiple Earth-circling surface waves retrieved from dense high-rate GPS network. Earth and Planetary Science Letters, 2019, 525, 115705.	4.4	3
29	North American Earth Science Megaproject Continuum, Part 3: New Canadian EONâ€ROSE Program. Acta Geologica Sinica, 2019, 93, 12-13.	1.4	0
30	Vertical Velocities, Glacial Isostatic Adjustment, and Earth Structure of Northern and Western Alaska Based on Repeat GPS Measurements. Journal of Geophysical Research: Solid Earth, 2019, 124, 9148-9163.	3.4	1
31	Hindcasting Magma Reservoir Stability Preceding the 2008 Eruption of Okmok, Alaska. Geophysical Research Letters, 2019, 46, 8801-8808.	4.0	19
32	Fault Geometry and Slip Distribution of the 2013 <i>Mw</i> 6.6 Lushan Earthquake in China Constrained by GPS, InSAR, Leveling, and Strong Motion Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 7341-7353.	3.4	14
33	Geodetic Observations of Timeâ€Variable Glacial Isostatic Adjustment in Southeast Alaska and Its Implications for Earth Rheology. Journal of Geophysical Research: Solid Earth, 2019, 124, 9870-9889.	3.4	29
34	Regional Global Navigation Satellite System Networks for Crustal Deformation Monitoring. Seismological Research Letters, 2019, 91, 552-572.	1.9	20
35	A large scale of apparent sudden movements in Japan detected by high-rate GPS after the 2011 Tohoku Mw9.0 earthquake: Physical signals or unidentified artifacts?. Earth, Planets and Space, 2019, 71, .	2.5	13
36	Glacial Isostatic Adjustment, Intraplate Strain, and Relative Sea Level Changes in the Eastern United States. Journal of Geophysical Research: Solid Earth, 2019, 124, 6056-6071.	3.4	14

#	Article	IF	CITATIONS
37	Cenozoic tectono-thermal history of the southern Talkeetna Mountains, Alaska: Insights into a potentially alternating convergent and transform plate margin. , 2019, 15, 1539-1576.		14
38	Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 2019, 89, 76-91.	1.4	77
39	Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaskaâ€Aleutian Subduction Zone. Geophysical Research Letters, 2018, 45, 3453-3460.	4.0	55
40	Evaluating landfast sea ice stress and fracture in support of operations on sea ice using SAR interferometry. Cold Regions Science and Technology, 2018, 149, 51-64.	3.5	20
41	Volcanic ash deposition, eelgrass beds, and inshore habitat loss from the 1920s to the 1990s at Chignik, Alaska. Estuarine, Coastal and Shelf Science, 2018, 202, 69-86.	2.1	10
42	Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series. International Journal of Applied Earth Observation and Geoinformation, 2018, 64, 171-180.	2.8	25
43	Singleâ€Frequency Instantaneous GNSS Velocities Resolve Dynamic Ground Motion of the 2016 MwÂ7.1 Iniskin, Alaska, Earthquake. Seismological Research Letters, 2018, 89, 1040-1048.	1.9	25
44	Complex Faulting and Triggered Rupture During the 2018 M _W 7.9 Offshore Kodiak, Alaska, Earthquake. Geophysical Research Letters, 2018, 45, 7533-7541.	4.0	39
45	The 1 May 2017 British Columbiaâ€Alaska Earthquake Doublet and Implication for Complexity Near Southern End of Denali Fault System. Geophysical Research Letters, 2018, 45, 5937-5947.	4.0	11
46	EON-ROSE and the Canadian Cordillera Array – Building Bridges to Span Earth System Science in Canada. Geoscience Canada, 2018, 45, 97-109.	0.8	8
47	Plate coupling and strain in the far western Aleutian arc modeled from GPS data. Geophysical Research Letters, 2017, 44, 3176-3183.	4.0	14
48	Probing Coulomb stress triggering effects for a Mw > 6.0 earthquake sequence from 1997 to 2014 along the periphery of the Bayan Har block on the Tibetan Plateau. Tectonophysics, 2017, 694, 249-267.	2.2	14
49	Episodic inflation and complex surface deformation of Akutan volcano, Alaska revealed from GPS time-series. Journal of Volcanology and Geothermal Research, 2017, 347, 337-359.	2.1	14
50	Rupture Along 400Âkm of the Bering Fracture Zone in the Komandorsky Islands Earthquake (M W 7.8) of 17 July 2017. Geophysical Research Letters, 2017, 44, 12,161.	4.0	12
51	Stressâ€driven relaxation of heterogeneous upper mantle and timeâ€dependent afterslip following the 2011 Tohoku earthquake. Journal of Geophysical Research: Solid Earth, 2016, 121, 385-411.	3.4	103
52	Modeling 3â€Ð crustal velocities in the United States and Canada. Journal of Geophysical Research: Solid Earth, 2016, 121, 5365-5388.	3.4	20
53	How fast is the middleâ€lower crust flowing in eastern Tibet? A constraint from geodetic observations. Journal of Geophysical Research: Solid Earth, 2016, 121, 6903-6915.	3.4	16
54	Slow slip events and timeâ€dependent variations in locking beneath Lower Cook Inlet of the Alaskaâ€Aleutian subduction zone. Journal of Geophysical Research: Solid Earth, 2016, 121, 1060-1079.	3.4	54

#	Article	IF	CITATIONS
55	Evidence for shallow megathrust slip across the Unalaska seismic gap during the great 1957 Andreanof Islands earthquake, eastern Aleutian Islands, Alaska. Geophysical Research Letters, 2016, 43, 10,328.	4.0	11
56	Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data. Earth and Planetary Science Letters, 2016, 437, 1-8.	4.4	71
57	A paleogeodetic record of variable interseismic rates and megathrust coupling at Simeulue Island, Sumatra. Geophysical Research Letters, 2015, 42, 10,585.	4.0	30
58	Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska. Journal of Geophysical Research: Solid Earth, 2015, 120, 5664-5676.	3.4	17
59	Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone. Geochemistry, Geophysics, Geosystems, 2015, 16, 2450-2461.	2.5	22
60	Indentorâ€corner tectonics in the Yakutatâ€St. Elias collision constrained by GPS. Journal of Geophysical Research: Solid Earth, 2015, 120, 3897-3908.	3.4	35
61	Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014. Remote Sensing, 2015, 7, 16778-16794.	4.0	15
62	Seasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE. Sensors, 2015, 15, 30525-30538.	3.8	26
63	Measurement and interpretation of subtle deformation signals at Unimak Island from 2003 to 2010 using weather modelâ€assisted time series InSAR. Journal of Geophysical Research: Solid Earth, 2015, 120, 1175-1194.	3.4	18
64	A 15 year slowâ€ s lip event on the Sunda megathrust offshore Sumatra. Geophysical Research Letters, 2015, 42, 6630-6638.	4.0	23
65	Coseismic and Early Postseismic Deformation of the 5 January 2013 Mw 7.5 Craig Earthquake from Static and Kinematic GPS Solutions. Bulletin of the Seismological Society of America, 2015, 105, 1153-1164.	2.3	30
66	Ground Deformation, Gravity, andÂMagnetics. , 2015, , 1101-1123.		3
67	Rapid earthquake focal mechanism inversion using high-rate GPS velometers in sparse network. Science China Earth Sciences, 2015, 58, 1970-1981.	5.2	10
68	The effects of compressibility on the GIA in southeast Alaska. Journal of Geodynamics, 2015, 84, 55-61.	1.6	2
69	Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth, Planets and Space, 2014, 66, .	2.5	63
70	Velocity Structure of the Saint Elias, Alaska, Region from Local Earthquake Tomography. Bulletin of the Seismological Society of America, 2014, 104, 2597-2603.	2.3	2
71	Why the 1964 Great Alaska Earthquake Matters 50 Years Later. Seismological Research Letters, 2014, 85, 245-251.	1.9	1
72	Bouguer gravity anomaly and isostasy at western Sichuan Basin revealed by new gravity surveys. Journal of Geophysical Research: Solid Earth, 2014, 119, 3925-3938.	3.4	26

J T Freymueller

#	Article	IF	CITATIONS
73	Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 <i>M_w</i> 7.9 Wenchuan earthquake. Journal of Geophysical Research: Solid Earth, 2014, 119, 3371-3392.	3.4	40
74	First geodetic observations of a deep earthquake: The 2013 Sea of Okhotsk <i>M_w </i> 8.3, 611 km-deep, event. Geophysical Research Letters, 2014, 41, 3826-3832.	4.0	10
75	Evaluating seasonal loading models and their impact on global and regional reference frame alignment. Journal of Geophysical Research: Solid Earth, 2014, 119, 1337-1358.	3.4	48
76	Displacements, Strains and Rotations in the Central Andean Plate Boundary Zone. Geodynamic Series, 2013, , 135-144.	0.1	6
77	The January 26, 2001 Bhuj Earthquake and the Diffuse Western Boundary of the Indian Plate. Geodynamic Series, 2013, , 243-254.	0.1	13
78	Crustal Shortening and Extension in the Central Andes: Insights from a Viscoelastic Model. Geodynamic Series, 2013, , 325-339.	0.1	10
79	The Closed Upper-Mantle Circulation of Plate Tectonics. Geodynamic Series, 2013, , 359-410.	0.1	33
80	Crustal Motion Models Developed for Version 3.2 of the Horizontal Time-Dependent Positioning Utility. Journal of Applied Geodesy, 2013, 7, .	1.1	7
81	The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1200-1204.	3.1	153
82	Repeated large Slow Slip Events at the southcentral Alaska subduction zone. Earth and Planetary Science Letters, 2013, 375, 303-311.	4.4	53
83	Surface deformation of Bezymianny Volcano, Kamchatka, recorded by GPS: The eruptions from 2005 to 2010 and long-term, long-wavelength subsidence. Journal of Volcanology and Geothermal Research, 2013, 263, 58-74.	2.1	13
84	Geodetic observations during the 2009 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 2013, 259, 115-132.	2.1	70
85	Horizontal motion in elastic response to seasonal loading of rain water in the Amazon Basin and monsoon water in Southeast Asia observed by GPS and inferred from GRACE. Geophysical Research Letters, 2013, 40, 6048-6053.	4.0	87
86	Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements. Journal of Geophysical Research: Solid Earth, 2013, 118, 5625-5642.	3.4	70
87	Rapid postseismic relaxation after the great 2006–2007 Kuril earthquakes from GPS observations in 2007–2011. Journal of Geophysical Research: Solid Earth, 2013, 118, 3691-3706.	3.4	36
88	Plate Boundary Zones: Concepts and Approaches. Geodynamic Series, 2013, , 1-26.	0.1	7
89	Supershear rupture of the 5 January 2013 Craig, Alaska (<i>M_w</i> 7.5) earthquake. Journal of Geophysical Research: Solid Earth, 2013, 118, 5903-5919.	3.4	68
90	Software to Help Surveying Engineers Deal with the Coordinate Changes Due to Crustal Motion in Alaska. , 2013, , .		2

6

#	Article	IF	CITATIONS
91	Gravity and uplift rates observed in southeast Alaska and their comparison with GIA model predictions. Journal of Geophysical Research, 2012, 117, .	3.3	19
92	Seasonal and longâ€ŧerm vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. Journal of Geophysical Research, 2012, 117, .	3.3	170
93	Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophysical Research Letters, 2012, 39, .	4.0	124
94	The effect of using inconsistent ocean tidal loading models on GPS coordinate solutions. Journal of Geodesy, 2012, 86, 409-421.	3.6	48
95	Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nature Geoscience, 2011, 4, 634-640.	12.9	219
96	The mechanism of postseismic deformation triggered by the 2006-2007 great Kuril earthquakes. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	24
97	The dynamics of a seismic wave field: Animation and analysis of kinematic GPS data recorded during the 2011 Tohoku-oki earthquake, Japan. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	43
98	A new mechanical model for Tibet. Nature, 2011, 472, 48-49.	27.8	7
99	Reevaluation of the viscoelastic and elastic responses to the past and present-day ice changes in Southeast Alaska. Tectonophysics, 2011, 511, 79-88.	2.2	24
100	Preface to the Special Issue on Geodynamic and Climate-Change Processes over Tibet, Xinjiang and Siberia. Terrestrial, Atmospheric and Oceanic Sciences, 2011, 22, 001.	0.6	0
101	Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements. Journal of Geophysical Research, 2010, 115, .	3.3	149
102	Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment. Journal of Geophysical Research, 2010, 115, .	3.3	8
103	Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS, and interferometric synthetic aperture radar. Journal of Geophysical Research, 2010, 115, .	3.3	67
104	Changes in the magma system during the 2008 eruption of Okmok volcano, Alaska, based on GPS measurements. Journal of Geophysical Research, 2010, 115, .	3.3	42
105	Seasonal Position Variations and Regional Reference Frame Realization. International Association of Geodesy Symposia, 2009, , 191-196.	0.4	33
106	The postseismic response to the 2002 <i>M</i> 7.9 Denali Fault earthquake: constraints from InSAR 2003-2005. Geophysical Journal International, 2009, 176, 353-367.	2.4	42
107	Coupled afterslip and viscoelastic flow following the 2002 Denali Fault, Alaska earthquake. Geophysical Journal International, 2009, 176, 670-682.	2.4	69
108	Eruption of Alaska Volcano Breaks Historic Pattern. Eos, 2009, 90, 173-174.	0.1	68

#	Article	IF	CITATIONS
109	Tracking magma volume recovery at Okmok volcano using GPS and an unscented Kalman filter. Journal of Geophysical Research, 2009, 114, .	3.3	66
110	A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. Journal of Geophysical Research, 2009, 114, .	3.3	185
111	Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska. Journal of Geophysical Research, 2008, 113, .	3.3	61
112	Inflation detected at Mount Veniaminof, Alaska, with campaign GPS. Geophysical Research Letters, 2008, 35, .	4.0	10
113	Correction to "Evidence for and implications of a Bering Plate based on geodetic measurements from the Aleutians and western Alaskaâ€. Journal of Geophysical Research, 2008, 113, .	3.3	1
114	Crustal Deformation and Seismic History Associated with the 2004 Indian Ocean Earthquake: A Perspective from the Andaman-Nicobar Islands. Bulletin of the Seismological Society of America, 2007, 97, S174-S191.	2.3	79
115	DEM Control in Arctic Alaska With ICESat Laser Altimetry. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 3710-3720.	6.3	25
116	Plate coupling variation and block translation in the Andreanof segment of the Aleutian arc determined by subduction zone modeling using GPS data. Geophysical Research Letters, 2007, 34, .	4.0	29
117	Transition from locked to creeping subduction in the Shumagin region, Alaska. Geophysical Research Letters, 2007, 34, .	4.0	75
118	Coseismic deformation of the 2002 Denali fault earthquake: Contributions from synthetic aperture radar range offsets. Journal of Geophysical Research, 2007, 112, .	3.3	22
119	Coseismic deformation of the 2002 Denali Fault earthquake: Insights from GPS measurements. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	39
120	Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. Journal of Geophysical Research, 2006, 111, .	3.3	157
121	Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	59
122	Well water level changes in Fairbanks, Alaska, due to the great Sumatra-Andaman earthquake. Earth, Planets and Space, 2006, 58, 181-184.	2.5	43
123	A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth and Planetary Science Letters, 2006, 247, 108-116.	4.4	145
124	Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake. Earth and Planetary Science Letters, 2006, 252, 481-489.	4.4	99
125	GPS-derived strain in northwestern California: Termination of the San Andreas fault system and convergence of the Sierra Nevada–Great Valley block contribute to southern Cascadia forearc contraction. Tectonophysics, 2006, 413, 171-184.	2.2	41
126	Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth and Planetary Science Letters, 2005, 237, 548-560.	4.4	232

#	Article	IF	CITATIONS
127	Crustal Deformation in the Southcentral Alaska Subduction Zone. Advances in Geophysics, 2004, 47, 1-63.	2.8	32
128	Rapid uplift of southern Alaska caused by recent ice loss. Geophysical Journal International, 2004, 158, 1118-1133.	2.4	63
129	Surface deformation caused by shallow magmatic activity at Okmok volcano, Alaska, detected by GPS campaigns 2000–2002. Earth, Planets and Space, 2004, 56, 29-32.	2.5	32
130	A deforming block model for the present-day tectonics of Tibet. Journal of Geophysical Research, 2004, 109, .	3.3	91
131	Spatially variable extension in southern Tibet based on GPS measurements. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	71
132	Examining tectonic-climatic interactions in Alaska and the northeastern Pacific. Eos, 2004, 85, 433.	0.1	8
133	Tide gauge records of uplift along the northern Pacific-North American plate boundary, 1937 to 2001. Journal of Geophysical Research, 2003, 108, .	3.3	48
134	New constraints on the motion of the Fairweather fault, Alaska, from GPS observations. Geophysical Research Letters, 2003, 30, .	4.0	76
135	Volcanic and tectonic deformation on Unimak Island in the Aleutian Arc, Alaska. Journal of Geophysical Research, 2003, 108, .	3.3	40
136	Coseismic slip distribution of the 2002 MW7.9 Denali fault earthquake, Alaska, determined from GPS measurements. Geophysical Research Letters, 2003, 30, .	4.0	52
137	The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science, 2003, 300, 1113-1118.	12.6	359
138	Deformation associated with the 1997 eruption of Okmok volcano, Alaska. Journal of Geophysical Research, 2002, 107, ETG 7-1-ETG 7-12.	3.3	49
139	Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake. Journal of Geophysical Research, 2002, 107, ECV 1-1-ECV 1-11.	3.3	87
140	The 1964 great Alaska earthquake: present day and cumulative postseismic deformation in the western Kenai Peninsula. Physics of the Earth and Planetary Interiors, 2002, 132, 5-20.	1.9	31
141	Present-day crustal movement and tectonic deformation in China continent. Science in China Series D: Earth Sciences, 2002, 45, 865-874.	0.9	35
142	Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 2002, 15, 157-171.	1.4	378
143	High interseismic coupling of the Alaska Subduction Zone SW of Kodiak Island inferred from GPS data. Geophysical Research Letters, 2001, 28, 443-446.	4.0	27
144	Crustal uplift in the south central Alaska subduction zone: New analysis and interpretation of tide gauge observations. Journal of Geophysical Research, 2001, 106, 11259-11270.	3.3	21

#	Article	IF	CITATIONS
145	Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 2001, 294, 574-577.	12.6	990
146	Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature, 2000, 404, 69-72.	27.8	227
147	Synthetic aperture radar interferometry of Okmok volcano, Alaska: Radar observations. Journal of Geophysical Research, 2000, 105, 10791-10806.	3.3	97
148	Aseismic inflation of Westdahl Volcano, Alaska, revealed by satellite radar interferometry. Geophysical Research Letters, 2000, 27, 1567-1570.	4.0	66
149	Spatial variations in present-day deformation, Kenai Peninsula, Alaska, and their implications. Journal of Geophysical Research, 2000, 105, 8079-8101.	3.3	97
150	North Pacific subduction process research benefits from new initiatives. Eos, 2000, 81, 612.	0.1	0
151	Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysical Research, 1999, 104, 1077-1093.	3.3	322
152	Kinematics of the Pacific-North America Plate Boundary Zone, northern California. Journal of Geophysical Research, 1999, 104, 7419-7441.	3.3	98
153	New GPS constraints on the motion of the Yakutat Block. Geophysical Research Letters, 1999, 26, 3029-3032.	4.0	68
154	Absence of strain accumulation in the Western Shumagin Segment of the Alaska Subduction Zone. Geophysical Research Letters, 1999, 26, 3233-3236.	4.0	51
155	Precise measurements help gauge pacific northwest's earthquake potential. Eos, 1998, 79, 269-269.	0.1	15
156	Satellite radar interferometry measures deformation at Okmok volcano. Eos, 1998, 79, 461-461.	0.1	34
157	Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska. Journal of Geophysical Research, 1998, 103, 29887-29894.	3.3	59
158	Global plate velocities from the Global Positioning System. Journal of Geophysical Research, 1997, 102, 9961-9981.	3.3	233
159	Deformation of the Kenai Peninsula, Alaska. Journal of Geophysical Research, 1997, 102, 20479-20487.	3.3	35
160	Deformation of New Trident Volcano measured by ERS-1 SAR interferometry, Katmai National Park, Alaska. Geophysical Research Letters, 1997, 24, 695-698.	4.0	62
161	GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 1997, 386, 61-64.	27.8	641
162	Global Positioning System measurements of Indian Plate Motion and convergence across the lesser Himalaya. Geophysical Research Letters, 1996, 23, 3107-3110.	4.0	35

#	Article	IF	CITATIONS
163	Relative motions of the Australian, Pacific and Antarctic Plates estimated by the Global Positioning System. Geophysical Research Letters, 1995, 22, 37-40.	4.0	24
164	Rapid Deformation of the South Flank of Kilauea Volcano, Hawaii. Science, 1995, 267, 1328-1332.	12.6	107
165	Co-seismic displacements of the 1992 landers earthquake sequence. Bulletin of the Seismological Society of America, 1994, 84, 625-645.	2.3	103
166	The co-seismic slip distribution of the Landers earthquake. Bulletin of the Seismological Society of America, 1994, 84, 646-659.	2.3	78
167	Plate Motions in the north Andean region. Journal of Geophysical Research, 1993, 98, 21853-21863.	3.3	142
168	Plate Motions and Active Crustal Deformation in the North Andean Region Measured with the Global Positioning System. International Association of Geodesy Symposia, 1993, , 131-145.	0.4	0
169	Comparison of baseline results for the TI-4100 and Trimble 4000SDT geodetic GPS receivers. Bulletin Geodesique, 1992, 66, 272-280.	0.4	7
170	The extended tracking network and indications of baseline precision and accuracy in the north Andes. Geophysical Research Letters, 1990, 17, 207-210.	4.0	13
171	First GPS baseline results from the north Andes. Geophysical Research Letters, 1990, 17, 211-214.	4.0	10
172	The effect of tracking network configuration on GPS baseline estimates for the CASA UNO Experiment. Geophysical Research Letters, 1990, 17, 647-650.	4.0	14
173	Geometry and treatment of fiducial networks: Effect on GPS baseline precision in South America. Geophysical Research Letters, 1988, 15, 1467-1469.	4.0	10
174	Active Deformation Processes in Alaska, Based on 15 Years of GPS Measurements. Geophysical Monograph Series, 0, , 1-42.	0.1	57
175	Paleoseismicity and Neotectonics of the Aleutian Subduction Zone-An Overview. Geophysical Monograph Series, 0, , 43-63.	0.1	25
176	An Overview of the Neotectonics of Interior Alaska: Far-Field Deformation from the Yakutat Microplate Collision. Geophysical Monograph Series, 0, , 83-108.	0.1	32
177	Active Tectonics of Interior Alaska: Seismicity, Gps Geodesy, and Local Geomorphology. Geophysical Monograph Series, 0, , 109-133.	0.1	11
178	Exhumation in the Chugach-Kenai Mountain Belt Above the Aleutian Subduction Zone, Southern Alaska. Geophysical Monograph Series, 0, , 151-166.	0.1	6
179	Active Faults on Northeastern Kodiak Island, Alaska. Geophysical Monograph Series, 0, , 167-184.	0.1	5
180	Paleoseismological Records of Multiple Great Earthquakes in Southcentral Alaska: A 4000-Year Record at Girdwood. Geophysical Monograph Series, 0, , 185-199.	0.1	5

J T Freymueller

#	Article	IF	CITATIONS
181	Geological and Geophysical Evaluation of the Mechanisms of the Great 1899 Yakutat Bay Earthquakes. Geophysical Monograph Series, 0, , 215-236.	0.1	19
182	Yakataga Fold-and-Thrust Belt: Structural Geometry and Tectonic Implications of a Small Continental Collision Zone. Geophysical Monograph Series, 0, , 237-256.	0.1	8
183	Identifying Active Structures in the Kayak Island and Pamplona Zones: Implications for Offshore Tectonics of the Yakutat Microplate, Gulf of Alaska. Geophysical Monograph Series, 0, , 257-268.	0.1	18
184	Neogene Exhumation of the Tordrillo Mountains, Alaska, and Correlations With Denali (Mount) Tj ETQq0 0 0 rgB ⁻	[/Overlock 0.1	2 10 Tf 50 62 14
185	Tectonics, Dynamics, and Seismic Hazard in the Canada-Alaska Cordillera. Geophysical Monograph Series, 0, , 297-319.	0.1	28
186	Contemporary Fault Mechanics in Southern Alaska. Geophysical Monograph Series, 0, , 321-336.	0.1	10
187	Orogenesis from Subducting Thick Crust and Evidence from Alaska. Geophysical Monograph Series, 0, , 337-349.	0.1	12
188	Stress Map for Alaska from Earthquake Focal Mechanisms. Geophysical Monograph Series, 0, , 351-367.	0.1	8
189	Rapid Ice Mass Loss: Does It Have an Influence on Earthquake Occurrence in Southern Alaska?. Geophysical Monograph Series, 0, , 369-384.	0.1	14
190	Challenges in Making a Seismic Hazard Map for Alaska and the Aleutians. Geophysical Monograph Series, 0, , 385-397.	0.1	3
191	Toward a Time-Dependent Probabilistic Seismic Hazard Analysis for Alaska. Geophysical Monograph Series, 0, , 399-416.	0.1	3
192	Fault Interaction in Alaska: Static Coulomb Stress Transfer. Geophysical Monograph Series, 0, , 417-430.	0.1	1
193	Evidence for Block Rotations and Basal Shear in the World's Fastest Slipping Continental Shear Zone in Nw New Guinea. Geodynamic Series, 0, , 87-99.	0.1	12
194	Crustal Block Rotations and Plate Coupling. Geodynamic Series, 0, , 101-122.	0.1	110
195	Neotectonics of the Yakutat Collision: Changes in Deformation Driven by Mass Redistribution. Geophysical Monograph Series, 0, , 65-81.	0.1	21
196	The Utility of GNSS for Earthquake Early Warning in Regions with Sparse Seismic Networks. Bulletin of the Seismological Society of America, 0, , .	2.3	9
197	Rupture Process of the 2017 MwÂ6.3 Earthquake in Jinghe, Northwest China, Constrained by GNSS, InSAR, and Teleseismic Waveforms. Seismological Research Letters, 0, , .	1.9	1