Antonio H. Castro Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7474533/publications.pdf

Version: 2024-02-01

354 papers 78,993 citations

109 h-index 277 g-index

367 all docs

367 docs citations

times ranked

367

54620 citing authors

#	Article	IF	CITATIONS
1	Ultracold Atomic Gases: Novel States of Matter. , 2022, , 527-559.		O
2	Microscopic theory of ionic motion in solids. Physical Review B, 2022, 105, .	1.1	5
3	Two-dimensional adaptive membranes with programmable water and ionic channels. Nature Nanotechnology, 2021, 16, 174-180.	15.6	86
4	Printable two-dimensional superconducting monolayers. Nature Materials, 2021, 20, 181-187.	13.3	102
5	Accelerated Synthesis of Graphene Oxide from Graphene. Nanomaterials, 2021, 11, 551.	1.9	48
6	2D Electrolytes: Theory, Modeling, Synthesis, and Characterization. Advanced Materials, 2021, 33, 2100442.	11.1	9
7	Electrically Controlled Thermal Radiation from Reduced Graphene Oxide Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27278-27283.	4.0	12
8	Computational methods for 2D materials modelling. Reports on Progress in Physics, 2021, 84, 106501.	8.1	4
9	Stability of a Rolled-Up Conformation State for Two-Dimensional Materials in Aqueous Solutions. Physical Review Letters, 2021, 127, 156101.	2.9	9
10	Unravelling strong electronic interlayer and intralayer correlations in a transition metal dichalcogenide. Nature Communications, 2021, 12, 6980.	5. 8	9
11	Inhibiting Corrosion of Biomedical-Grade Ti-6Al-4V Alloys with Graphene Nanocoating. Journal of Dental Research, 2020, 99, 285-292.	2.5	32
12	Collective excitations in 2D materials. Nature Reviews Physics, 2020, 2, 524-537.	11.9	37
13	Large enhancement of thermoelectric performance in MoS ₂ / <i>h</i> -BN heterostructure due to vacancy-induced band hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13929-13936.	3 . 3	34
14	Correlated states of a triangular net of coupled quantum wires: Implications for the phase diagram of marginally twisted bilayer graphene. Physical Review B, 2020, 101, .	1.1	12
15	Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. Science Advances, 2019, 5, eaaw2347.	4.7	80
16	Hidden anisotropy in the Drude conductivity of charge carriers with Dirac-Schr \tilde{A} ¶dinger dynamics. Physical Review B, 2019, 100, .	1.1	3
17	Polychromic carbon black: Laser galvanized multicolour fluorescence display. Nano Research, 2019, 12, 733-740.	5. 8	6
18	Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dental Materials, 2019, 35, 403-413.	1.6	49

#	Article	IF	Citations
19	Anomalous Quantum Metal in a 2D Crystalline Superconductor with Electronic Phase Nonuniformity. Nano Letters, 2019, 19, 4126-4133.	4.5	22
20	Evidence of Spin Frustration in a Vanadium Diselenide Monolayer Magnet. Advanced Materials, 2019, 31, e1901185.	11.1	129
21	Discommensuration-driven superconductivity in the charge density wave phases of transition-metal dichalcogenides. Physical Review B, 2019, 99, .	1.1	21
22	Black phosphorus and its isoelectronic materials. Nature Reviews Physics, 2019, 1, 306-317.	11.9	196
23	Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3. NPG Asia Materials, 2019, 11, .	3.8	41
24	Polyelectrolyte–Graphene Oxide Multilayer Composites for Array of Microchambers which are Mechanically Robust and Responsive to NIR Light. Macromolecular Rapid Communications, 2019, 40, e1700868.	2.0	21
25	Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature. Nature Communications, 2018, 9, 1455.	5.8	56
26	Graphene onto medical grade titanium: an atom-thick multimodal coating that promotes osteoblast maturation and inhibits biofilm formation from distinct species. Nanotoxicology, 2018, 12, 274-289.	1.6	52
27	Molecular-Beam Epitaxy of Two-Dimensional In ₂ Se ₃ and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. Nano Letters, 2018, 18, 6340-6346.	4.5	163
28		11.1	260
29	strain-induced gauge and kashba fields in ferroelectric kashba lead chalcogenide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:mi>X</mml:mi> monolayers (<mml:math) (xmlns:mml="http://www.w3.org/</td><td></mml:mrc
1998/Math</td><td>ow></mml:r
rdMathML" 0.784314="" 1="" 10="" 337="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""></mml:math)></mml:mrow></mml:math>		
30	Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure. Nature Nanotechnology, 2018, 13, 828-834.	15.6	113
31	Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nature Communications, 2018, 9, 2966.	5.8	211
32	Molecular Beam Epitaxy of Highly Crystalline MoSe ₂ on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 7562-7570.	7.3	70
33	Laser assisted blending of Ag nanoparticles in an alumina veil: a highly fluorescent hybrid. Nanoscale, 2018, 10, 18145-18152.	2.8	4
34	Localized magnetic states in two-dimensional semiconductors. Physical Review B, 2018, 97, .	1.1	3
35	Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Materials, 2017, 4, 021007.	2.0	45
36	Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. Nano Letters, 2017, 17, 1970-1977.	4.5	144

#	Article	IF	CITATIONS
37	Graphene transfer to 3-dimensional surfaces: a vacuum-assisted dry transfer method. 2D Materials, 2017, 4, 025060.	2.0	33
38	Two-dimensional square buckled Rashba lead chalcogenides. Physical Review B, 2017, 96, .	1.1	29
39	Rashba-like dispersion in buckled square lattices. Physical Review B, 2017, 96, .	1.1	6
40	Resolving the Spatial Structures of Bound Hole States in Black Phosphorus. Nano Letters, 2017, 17, 6935-6940.	4.5	33
41	Defects and oxidation resilience in InSe. Physical Review B, 2017, 96, .	1.1	44
42	Oxygen impact on the electronic and vibrational properties of black phosphorus probed by synchrotron infrared nanospectroscopy. 2D Materials, 2017, 4, 035028.	2.0	16
43	Quantized Transport, Strain-Induced Perfectly Conducting Modes, and Valley Filtering on Shape-Optimized Graphene Corbino Devices. Nano Letters, 2017, 17, 5304-5313.	4.5	32
44	Oxygen Passivation Mediated Tunability of Trion and Excitons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mr< td=""><td>nml:mn>2<</td><td></td></mpl:mr<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nml:mn>2<	
45	Excitonic mass gap in uniaxially strained graphene. Physical Review B, 2017, 95, .	1.1	17
46	Phosphorene: Enhanced Photoresponse from Phosphorene–Phosphoreneâ€6uboxide Junction Fashioned by Focused Laser Micromachining (Adv. Mater. 21/2016). Advanced Materials, 2016, 28, 4164-4164.	11.1	4
47	Enhanced Photoresponse from Phosphorene–Phosphoreneâ€Suboxide Junction Fashioned by Focused Laser Micromachining. Advanced Materials, 2016, 28, 4090-4096.	11.1	38
48	Magnetic effects in sulfur-decorated graphene. Scientific Reports, 2016, 6, 21460.	1.6	11
49	Generalized spectral method for near-field optical microscopy. Journal of Applied Physics, 2016, 119, .	1.1	51
50	Hybrid Bilayer WSe ₂ –CH ₃ NH ₃ PbI ₃ Organolead Halide Perovskite as a Highâ€Performance Photodetector. Angewandte Chemie - International Edition, 2016, 55, 11945-11949.	7.2	91
51	Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Physical Review B, 2016, 94, .	1.1	77
52	2D materials and van der Waals heterostructures. Science, 2016, 353, aac9439.	6.0	4,958
53	Tuning charge and correlation effects for a single molecule on a graphene device. Nature Communications, 2016, 7, 13553.	5.8	82
54	Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)., 2016,,.		0

#	Article	IF	CITATIONS
55	Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><mmlphysical 046803.<="" 116,="" 2016,="" letters,="" review="" td=""><td>ml:mn>2<</td><td>/mml:mn><!--</td--></td></mmlphysical></mml:mrow></mml:msub></mml:mrow></mml:math>	ml:mn>2<	/mml:mn> </td
56	Multiferroic Two-Dimensional Materials. Physical Review Letters, 2016, 116, 206803.	2.9	187
57	Valley physics in tin (II) sulfide. Physical Review B, 2016, 93, .	1.1	101
58	Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nature Communications, 2016, 7, 13278.	5.8	120
59	Resonantly Increased Optical Frequency Conversion in Atomically Thin Black Phosphorus. Advanced Materials, 2016, 28, 10693-10700.	11.1	64
60	Phosphorene: from theory to applications. Nature Reviews Materials, 2016, 1, .	23.3	815
61	Strongly bound Mott-Wannier excitons in GeS and GeSe monolayers. Physical Review B, 2016, 94, .	1.1	76
62	Evidence for Fast Interlayer Energy Transfer in MoSe ₂ /WS ₂ Heterostructures. Nano Letters, 2016, 16, 4087-4093.	4.5	205
63	Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dental Materials, 2016, 32, 1019-1025.	1.6	96
64	Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nature Photonics, 2016, 10, 244-247.	15.6	312
65	Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. Nano Letters, 2016, 16, 2145-2151.	4.5	196
66	Controlling many-body states by the electric-field effect in a two-dimensional material. Nature, 2016, 529, 185-189.	13.7	385
67	Edge phonons in black phosphorus. Nature Communications, 2016, 7, 12191.	5.8	70
68	Collective modes in anisotropic double-layer systems. Physical Review B, 2015, 91, .	1.1	26
69	Atomically thin dilute magnetism in Co-doped phosphorene. Physical Review B, 2015, 91, .	1.1	130
70	Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Physical Review B, 2015, 92, .	1.1	179
71	Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Stem Cells International, 2015, 2015, 1-12.	1.2	177
72	Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells. Carbon, 2015, 93, 266-275.	5.4	83

#	Article	lF	CITATIONS
7 3	Anomalous Spectral Features of a Neutral Bilayer Graphene. Scientific Reports, 2015, 5, 10025.	1.6	9
74	Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. Physical Review B, 2015, 91, .	1.1	181
7 5	Oxygen Defects in Phosphorene. Physical Review Letters, 2015, 114, 046801.	2.9	511
76	Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nature Communications, 2015, 6, 6485.	5.8	335
77	Tunneling Plasmonics in Bilayer Graphene. Nano Letters, 2015, 15, 4973-4978.	4.5	64
78	Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 8070-8077.	7.3	204
79	Tuning and Persistent Switching of Graphene Plasmons on a Ferroelectric Substrate. Nano Letters, 2015, 15, 4859-4864.	4.5	29
80	Revealing the Atomic Site-Dependent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>g</mml:mi></mml:mrow></mml:math> Factor within a Single Magnetic Molecule via the Extended Kondo Effect. Physical Review Letters, 2015, 114, 126601.	2.9	26
81	Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Applied Materials & Diterfaces, 2015, 7, 14557-14562.	4.0	318
82	Atomic Healing of Defects in Transition Metal Dichalcogenides. Nano Letters, 2015, 15, 3524-3532.	4.5	194
83	Unusual Angular Dependence of the Raman Response in Black Phosphorus. ACS Nano, 2015, 9, 4270-4276.	7.3	301
84	Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors. ACS Nano, 2015, 9, 4138-4145.	7.3	455
85	Large Frequency Change with Thickness in Interlayer Breathing Mode—Significant Interlayer Interactions in Few Layer Black Phosphorus. Nano Letters, 2015, 15, 3931-3938.	4.5	100
86	Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications, 2015, 6, 6647.	5.8	460
87	Polymer-Enriched 3D Graphene Foams for Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8275-8283.	4.0	73
88	Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures. Nature Communications, 2015, 6, 8337.	5.8	86
89	Plasmons in graphene moiré superlattices. Nature Materials, 2015, 14, 1217-1222.	13.3	141
90	Phosphorene: Overcoming the Oxidation Barrier. ACS Central Science, 2015, 1, 289-291.	5.3	19

#	Article	IF	CITATIONS
91	Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite. Scientific Reports, 2015, 5, 11430. Optical conductivity renormalization of graphene on <mml:math< td=""><td>1.6</td><td>11</td></mml:math<>	1.6	11
92	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">SrTiO<mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>due to resonant excitonic effects mediated by Ti<mml:math< td=""><td>1.1</td><td>20</td></mml:math<></mml:mi 	1.1	20
93	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mn>3</mml:mn><mml:mi>d<td>ni>1.1</td><td>mrow>48</td></mml:mi></mml:mrow>	ni>1.1	mrow>48
94	Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano, 2015, 9, 10411-10421.	7. 3	126
95	Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015, 83, 224-231.	5.4	82
96	van der Waals Force: A Dominant Factor for Reactivity of Graphene. Nano Letters, 2015, 15, 319-325.	4.5	65
97	Orbital symmetry fingerprints for magnetic adatoms in graphene. New Journal of Physics, 2014, 16, 013045.	1.2	14
98	Phosphorene nanoribbons. Europhysics Letters, 2014, 108, 47005.	0.7	134
99	Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors. Physical Review B, 2014, 90, .	1.1	31
100	Donor and acceptor levels in semiconducting transition-metal dichalcogenides. Physical Review B, 2014, 89, .	1.1	38
101	Extrinsic Spin Hall Effect Induced by Resonant Skew Scattering in Graphene. Physical Review Letters, 2014, 112, 066601.	2.9	105
102	Nanometer Thick Elastic Graphene Engine. Nano Letters, 2014, 14, 2677-2680.	4.5	34
103	Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014, 104, .	1.5	1,137
104	Electronic transport in graphene-based heterostructures. Applied Physics Letters, 2014, 104, .	1.5	61
105	Face-to-face transfer of wafer-scale graphene films. Nature, 2014, 505, 190-194.	13.7	386
106	Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump–Probe Nanoscopy. Nano Letters, 2014, 14, 894-900.	4.5	158
107	Scattering theory of spin-orbit active adatoms on graphene. Physical Review B, 2014, 90, .	1.1	48
108	Giant spin Hall effect in graphene grown by chemical vapour deposition. Nature Communications, 2014, 5, 4748.	5.8	179

#	Article	IF	CITATIONS
109	Excitons in anisotropic two-dimensional semiconducting crystals. Physical Review B, 2014, 90, .	1.1	136
110	Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nature Communications, 2014, 5, 4543.	5.8	372
111	Tunable optical properties of multilayer black phosphorus thin films. Physical Review B, 2014, 90, .	1.1	592
112	Strain-Induced Gap Modification in Black Phosphorus. Physical Review Letters, 2014, 112, 176801.	2.9	1,303
113	van der Waals forces and electron-electron interactions in two strained graphene layers. Physical Review B, 2014, 89, .	1.1	14
114	Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters, 2014, 14, 5133-5139.	4.5	89
115	Spin–orbit proximity effect in graphene. Nature Communications, 2014, 5, 4875.	5 . 8	431
116	Pseudomagnetic fields in graphene nanobubbles of constrained geometry: A molecular dynamics study. Physical Review B, 2014, 90, .	1.1	52
117	Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride. Science, 2014, 343, 1125-1129.	6.0	957
118	Transport Properties of Monolayer MoS ₂ Grown by Chemical Vapor Deposition. Nano Letters, 2014, 14, 1909-1913.	4.5	431
119	Infrared Pump-Probe Imaging and Spectroscopy with 10nm Resolution. , 2014, , .		0
120	Observation of intra- and inter-band transitions in the transient optical response of graphene. New Journal of Physics, 2013, 15, 015009.	1.2	87
121	Step Flow Versus Mosaic Film Growth in Hexagonal Boron Nitride. Journal of the American Chemical Society, 2013, 135, 2368-2373.	6.6	89
122	Terahertz Conductivity of Twisted Bilayer Graphene. Physical Review Letters, 2013, 110, 067401.	2.9	73
123	Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotechnology, 2013, 8, 821-825.	15.6	226
124	Origin of Indirect Optical Transitions in Few-Layer MoS ₂ , WS ₂ , and WSe ₂ . Nano Letters, 2013, 13, 5627-5634.	4.5	435
125	Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nature Communications, 2013, 4, 2681.	5.8	138
126	Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Physical Review B, 2013, 88, .	1.1	261

#	Article	IF	CITATIONS
127	Excitonic collapse in semiconducting transition-metal dichalcogenides. Physical Review B, 2013, 88, .	1.1	24
128	Spin-polarized electronic current induced by sublattice engineering of graphene sheets with boron/nitrogen. Physical Review B, 2013, 87, .	1.1	24
129	Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Physics, 2013, 9, 284-287.	6.5	384
130	An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Research, 2013, 6, 200-207.	5.8	140
131	Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science, 2013, 340, 1311-1314.	6.0	2,179
132	Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nature Communications, 2013, 4, 2010.	5 . 8	230
133	Topological Insulating States in Laterally Patterned Ordinary Semiconductors. Physical Review Letters, 2013, 110, 186601.	2.9	39
134	Thermodynamics of a Potts-like model for a reconstructed zigzag edge in graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	3
135	Resonant Tunneling in Graphene Pseudomagnetic Quantum Dots. Nano Letters, 2013, 13, 2692-2697.	4.5	49
136	Origami-based spintronics in graphene. Europhysics Letters, 2013, 104, 47001.	0.7	23
137	d–f hybridization and quantum criticality in weakly-itinerant ferromagnets. Journal of Physics Condensed Matter, 2013, 25, 025601.	0.7	6
138	Effective contact model for geometry-independent conductance calculations in graphene. Physical Review B, 2013, 88, .	1.1	7
139	Effect of uniaxial strain on ferromagnetic instability and formation of localized magnetic states on adatoms in graphene. Physical Review B, 2013, 87, .	1.1	21
140	Reversible Single Spin Control of Individual Magnetic Molecule by Hydrogen Atom Adsorption. Scientific Reports, 2013, 3, 1210.	1.6	115
141	Field-effect control of tunneling barrier height by exploiting graphene's low density of states. Journal of Applied Physics, 2013, 113, .	1.1	35
142	Ultracold Atomic Gases: Novel States of Matter. , 2013, , 1-38.		0
143	Near-field spectroscopy of silicon dioxide thin films. Physical Review B, 2012, 85, .	1.1	80
144	Elliot-Yafet Mechanism in Graphene. Physical Review Letters, 2012, 108, 206808.	2.9	114

#	Article	IF	CITATIONS
145	Correlated Magnetic States in Extended One-Dimensional Defects in Graphene. Nano Letters, 2012, 12, 5097-5102.	4.5	69
146	Spin-orbit coupling assisted by flexural phonons in graphene. Physical Review B, 2012, 86, .	1.1	34
147	Confined magneto-optical waves in graphene. Physical Review B, 2012, 85, .	1.1	54
148	Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons. Scientific Reports, 2012, 2, 983.	1.6	246
149	Optical conductivity study of screening of many-body effects in graphene interfaces. Europhysics Letters, 2012, 99, 67009.	0.7	25
150	Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Applied Physics Letters, 2012, 100, .	1.5	101
151	Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012, T146, 014006.	1.2	258
152	Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride. Applied Physics Letters, 2012, 100, .	1.5	74
153	Continuum model of the twisted graphene bilayer. Physical Review B, 2012, 86, .	1.1	463
154	Transforming moiré blisters into geometric graphene nano-bubbles. Nature Communications, 2012, 3, 823.	5.8	157
155	Electron-Electron Interactions in Graphene: Current Status and Perspectives. Reviews of Modern Physics, 2012, 84, 1067-1125.	16.4	999
156	Quenching of the Quantum Hall Effect in Graphene with Scrolled Edges. Physical Review Letters, 2012, 108, 166602.	2.9	12
157	Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487, 82-85.	13.7	1,780
158	Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Letters, 2012, 12, 1707-1710.	4.5	724
159	Another Spin on Graphene. Science, 2011, 332, 315-316.	6.0	8
160	Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Physical Review B, 2011, 83, .	1.1	152
161	Magnetic exchange mechanism for electronic gap opening in graphene. Europhysics Letters, 2011, 96, 27010.	0.7	8
162	Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids. Physical Review B, 2011, 84, .	1.1	125

#	Article	IF	Citations
163	Topologically protected zero modes in twisted bilayer graphene. Physical Review B, 2011, 84, .	1.1	112
164	Chiral filtering in graphene with coupled valleys. Physical Review B, 2011, 84, .	1.1	4
165	Coulomb drag and high-resistivity behavior in double-layer graphene. Europhysics Letters, 2011, 95, 18001.	0.7	51
166	Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO ₂ Interface. Nano Letters, 2011, 11, 4701-4705.	4. 5	500
167	New directions in science and technology: two-dimensional crystals. Reports on Progress in Physics, 2011, 74, 082501.	8.1	206
168	A new route to graphene layers by selective laser ablation. AIP Advances, 2011, 1, .	0.6	56
169	Two-Dimensional Crystals: Beyond Graphene. Materials Express, 2011, 1, 10-17.	0.2	135
170	Electronic doping of graphene by deposited transition metal atoms. Physical Review B, 2011, 84, .	1.1	29
171	Pinning of a two-dimensional membrane on top of a patterned substrate: The case of graphene. Physical Review B, 2011, 83, .	1.1	55
172	Kondo Quantum Criticality of Magnetic Adatoms in Graphene. Physical Review Letters, 2011, 106, 016801.	2.9	132
173	Quantum Hall Effect in Twisted Bilayer Graphene. Physical Review Letters, 2011, 107, 216602.	2.9	104
174	Transport properties of graphene with one-dimensional charge defects. Europhysics Letters, 2011, 94, 28003.	0.7	63
175	The carbon new age. Materials Today, 2010, 13, 12-17.	8.3	71
176	Observation of Van Hove singularities in twisted graphene layers. Nature Physics, 2010, 6, 109-113.	6.5	954
177	Effect of external conditions on the structure of scrolled graphene edges. Physical Review B, 2010, 81,	1.1	43
178	Biaxial Strain in Graphene Adhered to Shallow Depressions. Nano Letters, 2010, 10, 6-10.	4. 5	193
179	Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles. Science, 2010, 329, 544-547.	6.0	1,367
180	Geometry, Mechanics, and Electronics of Singular Structures and Wrinkles in Graphene. Physical Review Letters, 2010, 105, 156603.	2.9	177

#	Article	IF	CITATIONS
181	Optical properties of strained graphene. Europhysics Letters, 2010, 92, 67001.	0.7	112
182	Electronic properties of a biased graphene bilayer. Journal of Physics Condensed Matter, 2010, 22, 175503.	0.7	209
183	Excitonic Effects in the Optical Conductivity of Gated Graphene. Physical Review Letters, 2010, 105, 055501.	2.9	67
184	Reply to "Comment on â€~Quantum phase transition in the four-spin exchange antiferromagnet' ― Physical Review B, 2010, 82, .	1.1	3
185	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>N</mml:mi></mml:mrow>< in correlated graphene. Physical Review B, 2009, 80, .</mml:math></pre>	د ا mml:mat	hzœxpansio
186	Comment on "BCS Superconductivity of Dirac Electrons in Graphene Layers― Physical Review Letters, 2009, 102, 109701; author reply 109702.	2.9	12
187	Quantum phase transition in the four-spin exchange antiferromagnet. Physical Review B, 2009, 80, .	1.1	16
188	Magnetism and magnetotransport in disordered graphene. Physical Review B, 2009, 80, .	1.1	31
189	Distortion of the perfect lattice structure in bilayer graphene. Physical Review B, 2009, 79, .	1.1	11
190	Adatoms in graphene. Solid State Communications, 2009, 149, 1094-1100.	0.9	65
191	Observation of the Kohn anomaly near the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> point of bilayer graphene. Physical Review B, 2009, 80	1.1	32
192	The electronic properties of graphene. Reviews of Modern Physics, 2009, 81, 109-162.	16.4	20,779
193	Lenosky's energy and the phonon dispersion of graphene. Physical Review B, 2009, 80, .	1.1	30
194	Strained graphene: tight-binding and density functional calculations. New Journal of Physics, 2009, 11, 115002.	1.2	197
195	Electron-electron interactions in graphene bilayers. Europhysics Letters, 2009, 85, 58005.	0.7	40
196	Theory of Scanning Tunneling Spectroscopy of Magnetic Adatoms in Graphene. Physical Review Letters, 2009, 103, 206804.	2.9	89
197	Strain Engineering of Graphene's Electronic Structure. Physical Review Letters, 2009, 103, 046801.	2.9	933
198	Conductance quantization and transport gaps in disordered graphene nanoribbons. Physical Review B, 2009, 79, .	1.1	307

#	Article	IF	CITATIONS
199	Impurity-Induced Spin-Orbit Coupling in Graphene. Physical Review Letters, 2009, 103, 026804.	2.9	461
200	Tight-binding approach to uniaxial strain in graphene. Physical Review B, 2009, 80, .	1.1	1,094
201	Pauling's dreams for graphene. Physics Magazine, 2009, 2, .	0.1	37
202	Electronic properties of bilayer graphene probed by Resonance Raman Scattering. Physica Status Solidi (B): Basic Research, 2008, 245, 2060-2063.	0.7	16
203	Supercritical Coulomb impurities in gapped graphene. Physical Review B, 2008, 78, .	1.1	96
204	Modeling disorder in graphene. Physical Review B, 2008, 77, .	1.1	357
205	Origin of the energy bandgap in epitaxial graphene. Nature Materials, 2008, 7, 259-260.	13.3	175
206	Bilayer graphene: gap tunability and edge properties. Journal of Physics: Conference Series, 2008, 129, 012002.	0.3	28
207	Electronic properties of bilayer and multilayer graphene. Physical Review B, 2008, 78, .	1.1	259
208	Conductivity of suspended and non-suspended graphene at finite gate voltage. Physical Review B, 2008, 78, .	1.1	105
209	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>f</mml:mi></mml:math> -sum rule and unconventional spectral weight transfer in graphene. Physical Review B, 2008, 78, .	1.1	64
210	Electrostatic interactions between graphene layers and their environment. Physical Review B, 2008, 77,	1.1	125
211	Transport Through a Graphene Transistor. Mathematics in Industry, 2008, , 494-498.	0.1	0
212	Localized States at Zigzag Edges of Bilayer Graphene. Physical Review Letters, 2008, 100, 026802.	2.9	136
213	Graphene as an electronic membrane. Europhysics Letters, 2008, 84, 57007.	0.7	248
214	The infrared conductivity of graphene on top of silicon oxide. Europhysics Letters, 2008, 84, 38002.	0.7	54
215	Localized Magnetic States in Graphene. Physical Review Letters, 2008, 101, 026805.	2.9	233
216	Tailoring graphene with metals on top. Physical Review B, 2008, 77, .	1.1	110

#	Article	IF	Citations
217	Surface dissipation in nanoelectromechanical systems: Unified description with the standard tunneling model and effects of metallic electrodes. Physical Review B, 2008, 77, .	1.1	74
218	Phase-locking transition of coupled low-dimensional superfluids. Europhysics Letters, 2008, 81, 10008.	0.7	22
219	Electronic Compressibility of a Graphene Bilayer. Physical Review Letters, 2008, 100, 106805.	2.9	40
220	Numerical studies of conductivity and Fano factor in disordered graphene. Physical Review B, 2008, 77,	1.1	126
221	Theory of the Magnetic Moment in Iron Pnictides. Physical Review Letters, 2008, 101, 126401.	2.9	117
222	Publisher's Note: Localized Magnetic States in Graphene [Phys. Rev. Lett.101, 026805 (2008)]. Physical Review Letters, 2008, 101, .	2.9	6
223	Publisher's Note: Conductivity of suspended and non-suspended graphene at finite gate voltage [Phys. Rev. B78, 085418 (2008)]. Physical Review B, 2008, 78, .	1.1	1
224	Mean-field study of the heavy-fermion metamagnetic transition. Physical Review B, 2008, 77, .	1.1	47
225	Electron-electron interactions in the vacuum polarization of graphene. Physical Review B, 2008, 78, .	1.1	49
226	Negative hopping magnetoresistance and dimensional crossover in lightly doped cuprate superconductors. Physical Review B, 2007, 76, .	1.1	11
227	Impurities in a Biased Graphene Bilayer. Physical Review Letters, 2007, 98, 126801.	2.9	100
228	Phase diagram of the Holstein-Hubbard two-leg ladder using a functional renormalization-group method. Physical Review B, 2007, 75, .	1.1	10
229	Electron transmission between normal and heavy electron metallic phases in a Kondo lattice system. Physical Review B, 2007, 75, .	1.1	5
230	Fermi liquid theory of a Fermi ring. Physical Review B, 2007, 75, .	1.1	69
231	Exotic superconducting phases of ultracold atom mixtures on triangular lattices. Physical Review B, 2007, 75, .	1.1	23
232	Electron waves in chemically substituted graphene. Europhysics Letters, 2007, 80, 67007.	0.7	71
233	Retardation effects in the Holstein-Hubbard chain at half filling. Physical Review B, 2007, 75, .	1.1	35
234	Dissipation due to two-level systems in nano-mechanical devices. Europhysics Letters, 2007, 78, 60002.	0.7	35

#	Article	lF	Citations
235	Superconducting States of Pure and Doped Graphene. Physical Review Letters, 2007, 98, 146801.	2.9	388
236	Making graphene visible. Applied Physics Letters, 2007, 91, .	1.5	1,653
237	Probing the electronic structure of bilayer graphene by Raman scattering. Physical Review B, 2007, 76, .	1.1	303
238	Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Physical Review Letters, 2007, 99, 216802.	2.9	1,728
239	Electron-phonon coupling and Raman spectroscopy in graphene. Physical Review B, 2007, 75, .	1.1	167
240	Dissipation in graphene and nanotube resonators. Physical Review B, 2007, 76, .	1.1	55
241	Transmission through a biased graphene bilayer barrier. Physical Review B, 2007, 76, .	1.1	125
242	Graphene Bilayer with a Twist: Electronic Structure. Physical Review Letters, 2007, 99, 256802.	2.9	1,165
243	Coulomb Impurity Problem in Graphene. Physical Review Letters, 2007, 99, 166802.	2.9	261
244	Electronic properties of stacks of graphene layers. Solid State Communications, 2007, 143, 116-122.	0.9	59
245	Phonons behaving badly. Nature Materials, 2007, 6, 176-177.	13.3	36
246	Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 2007, 6, 770-775.	13.3	2,115
247	Coulomb Blockade in Graphene Nanoribbons. Physical Review Letters, 2007, 99, 166803.	2.9	286
248	Interaction effects in single layer and multi-layer graphene. European Physical Journal: Special Topics, 2007, 148, 117-125.	1.2	17
249	Ice: A strongly correlated proton system. Physical Review B, 2006, 74, .	1.1	56
250	First-Principles Calculation of the Single Impurity Surface Kondo Resonance. Physical Review Letters, 2006, 97, 156102.	2.9	40
251	Edge and surface states in the quantum Hall effect in graphene. Physical Review B, 2006, 73, .	1.1	164
252	Strong coupling superconductivity via an asymptotically exact renormalization-group framework. Journal of Physics and Chemistry of Solids, 2006, 67, 516-521.	1.9	3

#	Article	IF	CITATIONS
253	Electronic states and Landau levels in graphene stacks. Physical Review B, 2006, 73, .	1.1	591
254	Renormalization-group approach to superconductivity: from weak to strong electron–phonon coupling. Philosophical Magazine, 2006, 86, 2631-2641.	0.7	13
255	Electronic Properties of Graphene Multilayers. Physical Review Letters, 2006, 97, 266801.	2.9	264
256	Dirac fermion confinement in graphene. Physical Review B, 2006, 73, .	1.1	137
257	Electronic properties of two-dimensional carbon. Annals of Physics, 2006, 321, 1559-1567.	1.0	46
258	Density of states and transport properties of a diluted honeycomb lattice. Physica B: Condensed Matter, 2006, 378-380, 278-280.	1.3	0
259	Conductance quantization in mesoscopic graphene. Physical Review B, 2006, 73, .	1.1	320
260	Disorder Induced Localized States in Graphene. Physical Review Letters, 2006, 96, 036801.	2.9	543
261	Electronic properties of disordered two-dimensional carbon. Physical Review B, 2006, 73, .	1.1	1,292
262	Drawing conclusions from graphene. Physics World, 2006, 19, 33-37.	0.0	197
263	Magneto-Optical Evidence of Double Exchange in a Percolating Lattice. Physical Review Letters, 2006, 96, 016403.	2.9	16
264	Electron-electron interactions and the phase diagram of a graphene bilayer. Physical Review B, 2006, 73, .	1.1	200
265	Competing Types of Order in Two-Dimensional Bose-Fermi Mixtures. Physical Review Letters, 2006, 97, 030601.	2.9	39
266	Reply to the Comment by A. J. Millis et al. on "Quantum Griffiths effects in metallic systems― Europhysics Letters, 2005, 72, 1054-1055.	0.7	5
267	Microscopic theory of the single impurity surface Kondo resonance. Physical Review B, 2005, 71, .	1.1	22
268	Renormalization-group approach to strong-coupled superconductors. Physical Review B, 2005, 72, .	1.1	34
269	Fixed Points of the Dissipative Hofstadter Model. Physical Review Letters, 2005, 94, 170401.	2.9	5

#	Article	IF	CITATIONS
271	Nodal liquid ands-wave superconductivity in transition metal dichalcogenides. Physical Review B, 2005, 71, .	1.1	49
272	Frustration of decoherence in open quantum systems. Physical Review B, 2005, 72, .	1.1	41
273	Quantum Griffiths effects in metallic systems. Europhysics Letters, 2005, 71, 790-796.	0.7	16
274	Heat bath approach to Landau damping and Pomeranchuk quantum critical points. Physical Review B, 2005, 72, .	1.1	30
275	Coulomb interactions and ferromagnetism in pure and doped graphene. Physical Review B, 2005, 72, .	1.1	207
276	Comment on "Gapless Spin-1 Neutral Collective Mode Branch for Graphite― Physical Review Letters, 2004, 92, 199701; author reply 199702.	2.9	14
277	Electromagnetic response of layered superconductors with broken lattice inversion symmetry. Physical Review B, 2004, 69, .	1.1	8
278	Nodal Cooper-Pair Stabilized Phase Dynamics in Granulard-Wave Superconductors. Physical Review Letters, 2004, 92, 037004.	2.9	20
279	Nuclear spin qubits in a pseudospin quantum chain. Physical Review A, 2004, 69, .	1.0	10
280	Excitations and quantum fluctuations in site-diluted two-dimensional antiferromagnets. Physical Review B, 2004, 69, .	1.1	30
281	Double Exchange Model for Magnetic Hexaborides. Physical Review Letters, 2004, 93, 147202.	2.9	22
282	Carlsonet al.Reply:. Physical Review Letters, 2004, 92, .	2.9	1
283	Spin-glass phase of cuprates. Physical Review B, 2004, 69, .	1.1	47
284	Long-range charge transfer in periodic DNA through polaron diffusion. Chemical Physics, 2004, 303, 189-196.	0.9	21
285	Coupling of Longitudinal and Transverse Stripe Fluctuations. Journal of Superconductivity and Novel Magnetism, 2003, 16, 491-494.	0.5	0
286	Vortex Liquid Crystals in Anisotropic Type II Superconductors. Physical Review Letters, 2003, 90, 087001.	2.9	25
287	Interplay between Disorder and Quantum and Thermal Fluctuations in Ferromagnetic Alloys: The case of UCu2Si2â^'xGex. Physical Review Letters, 2003, 91, 257206.	2.9	11
288	Quantum Magnetic Impurities in Magnetically Ordered Systems. Physical Review Letters, 2003, 91, 096401.	2.9	43

#	Article	IF	CITATIONS
289	Metallic continuum quantum ferromagnets at finite temperature. Europhysics Letters, 2003, 62, 890-896.	0.7	4
290	SUPERCONDUCTIVITY AND THE STRIPE STATE OF TRANSITION METAL OXIDES. , 2003, , .		O
291	Phase Diagram of the Anisotropic Kondo Chain. Physical Review Letters, 2002, 88, 217201.	2.9	9
292	Effect of impurities on quasi-two-dimensional quantum antiferromagnet. Journal of Applied Physics, 2002, 91, 8387.	1.1	0
293	Charge density wave formation in the low-temperature-tetragonal phase of cuprates. Physical Review B, 2002, 65, .	1.1	9
294	Coulomb gas approach to the anisotropic one-dimensional Kondo lattice model at arbitrary filling. Physical Review B, 2002, 66, .	1.1	21
295	Stripe as an effective one-dimensional band of composite excitations. Physical Review B, 2002, 65, .	1.1	28
296	Diluted quantum antiferromagnets:â€,Spin excitations and long-range order. Physical Review B, 2002, 65,	1.1	58
297	Charge stripe in an antiferromagnet: 1d band of composite excitations. Physica B: Condensed Matter, 2002, 312-313, 566-568.	1.3	2
298	Charge Density Wave, Superconductivity, and Anomalous Metallic Behavior in 2D Transition Metal Dichalcogenides. Physical Review Letters, 2001, 86, 4382-4385.	2.9	403
299	Nonlinear excitations in one-dimensional correlated insulators. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 827-846.	0.6	4
300	Topological defects and the spin glass phase of cuprates. Europhysics Letters, 2001, 56, 870-876.	0.7	10
301	Long-Range Order and Low-Energy Spectrum of Diluted 2D Quantum Antiferromagnet. Physical Review Letters, 2001, 87, 067209.	2.9	27
302	TcSuppression in Co-Doped Striped Cuprates. Physical Review Letters, 2001, 87, 177010.	2.9	24
303	Phonons and solitons in one-dimensional Mott insulators. Physical Review B, 2001, 64, .	1.1	O
304	Stripes, vibrations, and superconductivity. Physical Review B, 2001, 64, .	1.1	41
305	P-wave pairing and ferromagnetism in the metal-insulator transition in two dimensions. Physical Review B, 2001, 64, .	1.1	11
306	Pairing, Stripes, Lattice Distortions, and Superconductivity in Cuprate Oxides. Journal of Superconductivity and Novel Magnetism, 2000, 13, 913-916.	0.5	5

#	Article	IF	CITATIONS
307	Disorder-driven non-Fermi-liquid behavior inCeRhRuSi2. Physical Review B, 2000, 61, 432-440.	1.1	25
308	Non-Fermi-liquid behavior in U and Ce alloys: Criticality, disorder, dissipation, and Griffiths-McCoy singularities. Physical Review B, 2000, 62, 14975-15011.	1.1	184
309	Effective field theory for layered quantum antiferromagnets with nonmagnetic impurities. Physical Review B, 2000, 61, R3772-R3775.	1.1	42
310	Mobility of Bloch walls via the collective coordinate method. Physical Review B, 2000, 62, 919-927.	1.1	4
311	Metallic Stripe in Two Dimensions: Stability and Spin-Charge Separation. Physical Review Letters, 2000, 84, 4922-4925.	2.9	58
312	Charge ordering and long-range interactions in layered transition metal oxides: A quasiclassical continuum study. Physical Review B, 2000, 62, 4353-4369.	1.1	40
313	Charge Ordering and Long-Range Interactions in Layered Transition Metal Oxides. Physical Review Letters, 1999, 82, 4679-4682.	2.9	57
314	One-Particle Spectral Properties of 1D Mott-Hubbard Insulators. Physical Review Letters, 1999, 83, 3892-3895.	2.9	8
315	Striped Phase in the Presence of Disorder and Lattice Potentials. Physical Review Letters, 1999, 82, 2135-2138.	2.9	48
316	Stripe dynamics in presence of disorder and lattice potentials. European Physical Journal Special Topics, 1999, 09, Pr10-317-Pr10-319.	0.2	0
317	Non-Fermi Liquid Behavior and Griffiths Phase inf-Electron Compounds. Physical Review Letters, 1998, 81, 3531-3534.	2.9	426
318	Evidence for a Common Physical Description of Non-Fermi-Liquid Behavior in Chemically Substitutedf-Electron Systems. Physical Review Letters, 1998, 81, 5620-5623.	2.9	131
319	Superconductivity, Josephson Coupling, and Order Parameter Symmetry in Striped Cuprates. Physical Review Letters, 1998, 80, 4040-4043.	2.9	33
320	Comment on "Generalization of a Fermi Liquid to a Liquid with Fractional Exclusion Statistics in Arbitrary Dimensions: Theory of a Haldane Liquid― Physical Review Letters, 1998, 81, 489-489.	2.9	7
321	Superconducting Phase Coherence in Striped Cuprates. Physical Review Letters, 1997, 78, 3931-3934.	2.9	27
322	Open Luttinger Liquids. Physical Review Letters, 1997, 79, 4629-4632.	2.9	40
323	Landau level bosonization of a two-dimensional electron gas. Physical Review B, 1997, 55, R7347-R7350.	1.1	14
324	Theory of spin fluctuations in striped phases of doped antiferromagnetic cuprates. Journal of Superconductivity and Novel Magnetism, 1997, 10, 349-353.	0.5	5

#	Article	lF	CITATIONS
325	Luttinger stripes in antiferromagnets. Zeitschrift Für Physik B-Condensed Matter, 1996, 103, 185-192.	1.1	15
326	Bosonization of a 2D electron gas in a magnetic field. Zeitschrift FÃ $\frac{1}{4}$ r Physik B-Condensed Matter, 1996, 103, 279-281.	1.1	1
327	Doped Planar Quantum Antiferromagnets with Striped Phases. Physical Review Letters, 1996, 76, 2165-2168.	2.9	93
328	Electrons, pseudoparticles, and quasiparticles in the one-dimensional many-electron problem. Physical Review B, 1996, 54, 11230-11244.	1.1	3
329	Magnetic-field and chemical-potential effects on the low-energy separation of the Hubbard chain. Physical Review B, 1996, 54, 9960-9969.	1.1	2
330	Dynamics of a heavy particle in a Luttinger liquid. Physical Review B, 1996, 53, 9713-9718.	1.1	73
331	On quantum transmission of a system with internal degrees of freedom. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 209, 290-296.	0.9	1
332	Exotic low-energy separation in 1D quantum liquids. Journal of Low Temperature Physics, 1995, 99, 577-582.	0.6	0
333	Landau theory of phase separation in cuprates. Physical Review B, 1995, 51, 3254-3256.	1.1	11
334	Exact solution of the Landau fixed point via bosonization. Physical Review B, 1995, 51, 4084-4104.	1.1	56
335	New Model for Dissipation in Quantum Mechanics. Physical Review Letters, 1995, 75, 2631-2631.	2.9	1
336	Conservation Laws and Bosonization in Integrable Luttinger Liquids. Physical Review Letters, 1995, 74, 3089-3089.	2.9	9
337	Master equation for a particle coupled to a two-level reservoir. Physical Review B, 1995, 52, 10693-10696.	1.1	O
338	Motion of heavy particles coupled to fermionic and bosonic environments in one dimension. Physical Review B, 1995, 52, 4198-4208.	1.1	14
339	Kondo Resonance and log T Conductivity in Highly Conducting Trans-Polyacetylene. Europhysics Letters, 1995, 29, 389-394.	0.7	7
340	Mobility and diffusion of a particle coupled to a Luttinger liquid. Physical Review B, 1994, 50, 4863-4866.	1.1	12
341	Conservation laws and bosonization in integrable Luttinger liquids. Physical Review Letters, 1994, 73, 926-929.	2.9	22
342	Pseudoparticle-operator description of an interacting bosonic gas. Physical Review B, 1994, 50, 14032-14047.	1.1	22

#	Article	IF	CITATIONS
343	Perturbation theory of low-dimensional quantum liquids. II. Operator description of Virasoro algebras in integrable systems. Physical Review B, 1994, 50, 3683-3695.	1.1	25
344	Perturbation theory of low-dimensional quantum liquids. I. The pseudoparticle-operator basis. Physical Review B, 1994, 50, 3667-3682.	1.1	23
345	Bosonization of the low energy excitations of Fermi liquids. Physical Review Letters, 1994, 72, 1393-1397.	2.9	101
346	Bosonization of Fermi liquids. Physical Review B, 1994, 49, 10877-10892.	1.1	97
347	The thermodynamics of quantum systems and generalizations of Zamolodchikov's C-theorem. Nuclear Physics B, 1993, 400, 525-546.	0.9	47
348	Transport properties of solitons. Physical Review E, 1993, 48, 4037-4043.	0.8	33
349	Dynamical decoupling and Kac-Moody current representation in multicomponent integrable systems. Physical Review Letters, 1993, 70, 1904-1907.	2.9	24
350	Magnetic effects, dynamical form factors, and electronic instabilities in the Hubbard chain. Physical Review B, 1993, 48, 4200-4203.	1.1	26
351	Dissipative quantum systems modeled by a two-level-reservoir coupling. Physical Review B, 1993, 48, 13974-13976.	1.1	60
352	Alternative approach to the dynamics of polarons in one dimension. Physical Review B, 1992, 46, 8858-8876.	1,1	46
353	New model for dissipation in quantum mechanics. Physical Review Letters, 1991, 67, 1960-1963.	2.9	36
354	Quantum dynamics of an electromagnetic mode in a cavity. Physical Review A, 1990, 42, 6884-6893.	1.0	18