E J Dlugokencky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7474206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methane budget estimates in Finland from the CarbonTracker Europe-CH ₄ data assimilation system. Tellus, Series B: Chemical and Physical Meteorology, 2022, 71, 1565030.	0.8	11
2	Forward and Inverse Modelling of Atmospheric Nitrous Oxide Using MIROC4-Atmospheric Chemistry-Transport Model. Journal of the Meteorological Society of Japan, 2022, 100, 361-386.	0.7	8
3	The Role of Emission Sources and Atmospheric Sink in the Seasonal Cycle of CH4 and δ13-CH4: Analysis Based on the Atmospheric Chemistry Transport Model TM5. Atmosphere, 2022, 13, 888.	1.0	1
4	Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase. Communications Earth & Environment, 2022, 3, .	2.6	11
5	3â€Ð Atmospheric Modeling of the Global Budget of N ₂ O and Its Isotopologues for 1980–2019: The Impact of Anthropogenic Emissions. Global Biogeochemical Cycles, 2022, 36, .	1.9	1
6	Atmospheric oil and natural gas hydrocarbon trends in the Northern Colorado Front Range are notably smaller than inventory emissions reductions. Elementa, 2021, 9, .	1.1	4
7	Technical note: A high-resolution inverse modelling technique for estimating surface CO ₂ fluxes based on the NIES-TM–FLEXPART coupled transport model and its adjoint. Atmospheric Chemistry and Physics, 2021, 21, 1245-1266.	1.9	23
8	Evaluation of single-footprint AIRS CH ₄ profile retrieval uncertainties using aircraft profile measurements. Atmospheric Measurement Techniques, 2021, 14, 335-354.	1.2	15
9	Detection of local mixing in time-series data using permutation entropy. Physical Review E, 2021, 103, 022217.	0.8	2
10	Observations of greenhouse gases as climate indicators. Climatic Change, 2021, 165, 12.	1.7	30
11	Improved Constraints on Global Methane Emissions and Sinks Using <i>Î</i> ¹³ C H ₄ . Global Biogeochemical Cycles, 2021, 35, e2021GB007000.	1.9	50
12	Inter-comparison Activities of the WMO/GAW World Calibration Centre for SF6: A Strategy for the High Precision Atmospheric Measurements. Journal of Korean Society for Atmospheric Environment, 2021, 37, 512-522.	0.2	1
13	Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. Atmospheric Chemistry and Physics, 2021, 21, 12631-12647.	1.9	23
14	What do we know about the global methane budget? Results from four decades of atmospheric CH ₄ observations and the way forward. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200440.	1.6	23
15	Tropospheric Ageâ€ofâ€Air: Influence of SF ₆ Emissions on Recent Surface Trends and Model Biases. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035451.	1.2	3
16	Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200457.	1.6	16
17	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	13.7	814
18	Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO ₂ seasonal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21079-21087.	3.3	27

#	Article	IF	CITATIONS
19	Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nature Climate Change, 2020, 10, 317-321.	8.1	70
20	Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sensing, 2020, 12, 375.	1.8	28
21	Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1. Atmospheric Chemistry and Physics, 2020, 20, 805-827.	1.9	28
22	Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 2020, 578, 409-412.	13.7	172
23	Investigating large methane enhancements in the U.S. San Juan Basin. Elementa, 2020, 8, .	1.1	8
24	On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmospheric Chemistry and Physics, 2020, 20, 13011-13022.	1.9	18
25	Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. Atmospheric Chemistry and Physics, 2020, 20, 9525-9546.	1.9	19
26	Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO ₂ . Biogeosciences, 2020, 17, 5721-5743.	1.3	6
27	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
28	Observations of atmospheric ¹⁴ CO ₂ at Anmyeondo GAW station, South Korea: implications for fossil fuel CO ₂ and emission ratios. Atmospheric Chemistry and Physics, 2020, 20, 12033-12045.	1.9	13
29	Inversion Estimates of Methane Emission in the Middle East in 2010-2017 with GOSAT Observations. , 2020, , .		0
30	Evaluating Simulations of Interhemispheric Transport: Interhemispheric Exchange Time Versus SF ₆ Age. Geophysical Research Letters, 2019, 46, 1113-1120.	1.5	12
31	Influence of Atmospheric Transport on Estimates of Variability in the Global Methane Burden. Geophysical Research Letters, 2019, 46, 2302-2311.	1.5	16
32	Enhanced North American carbon uptake associated with El Niño. Science Advances, 2019, 5, eaaw0076.	4.7	45
33	Evaluation and Analysis of the Seasonal Cycle and Variability of the Trend from GOSAT Methane Retrievals. Remote Sensing, 2019, 11, 882.	1.8	17
34	Longâ€Term Measurements Show Little Evidence for Large Increases in Total U.S. Methane Emissions Over the Past Decade. Geophysical Research Letters, 2019, 46, 4991-4999.	1.5	35
35	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	1.9	353
36	Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. Atmospheric Chemistry and Physics, 2019, 19, 13701-13723.	1.9	52

#	Article	IF	CITATIONS
37	Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories. Remote Sensing, 2019, 11, 2489.	1.8	29
38	Methane source attribution in a U.S. dry gas basin using spatial patterns of ground and airborne ethane and methane measurements. Elementa, 2019, 7, .	1.1	10
39	Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 646-659.	1.3	18
40	Top-down constraints on global N ₂ O emissions at optimal resolution: application of aÂnew dimension reduction technique. Atmospheric Chemistry and Physics, 2018, 18, 735-756.	1.9	22
41	Inverse modelling of European CH ₄ emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. Atmospheric Chemistry and Physics, 2018, 18, 901-920.	1.9	77
42	Three-dimensional methane distribution simulated with FLEXPART 8-CTM-1.1 constrained with observation data. Geoscientific Model Development, 2018, 11, 4469-4487.	1.3	10
43	Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 11,499.	1.5	46
44	Nitrous Oxide Emissions Estimated With the CarbonTracker‣agrange North American Regional Inversion Framework. Global Biogeochemical Cycles, 2018, 32, 463-485.	1.9	24
45	Inverse Estimation of an Annual Cycle of California's Nitrous Oxide Emissions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4758-4771.	1.2	6
46	Enhanced methane emissions from tropical wetlands during the 2011 La Niña. Scientific Reports, 2017, 7, 45759.	1.6	41
47	Investigation of the N2O emission strength in the U. S. Corn Belt. Atmospheric Research, 2017, 194, 66-77.	1.8	13
48	Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements. Environmental Science & amp; Technology, 2017, 51, 7286-7294.	4.6	83
49	U.S. CH ₄ emissions from oil and gas production: Have recent large increases been detected?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4070-4083.	1.2	47
50	Gradients of column CO ₂ across North America from the NOAA Global Greenhouse Gas Reference Network. Atmospheric Chemistry and Physics, 2017, 17, 15151-15165.	1.9	12
51	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	1.9	85
52	Constraining N ₂ O emissions since 1940 using firn air isotope measurements in both hemispheres. Atmospheric Chemistry and Physics, 2017, 17, 4539-4564.	1.9	12
53	Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH ₄ v1.0. Geoscientific Model Development, 2017, 10, 1261-1289.	1.3	40
54	Evaluation of wetland methane emissions across North America using atmospheric data and inverse modeling. Biogeosciences, 2016, 13, 1329-1339.	1.3	21

#	Article	IF	CITATIONS
55	No significant increase in longâ€ŧerm CH ₄ emissions on North Slope of Alaska despite significant increase in air temperature. Geophysical Research Letters, 2016, 43, 6604-6611.	1.5	52
56	Development of a Northern Continental Air Standard Reference Material. Analytical Chemistry, 2016, 88, 3376-3385.	3.2	15
57	Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016, 30, 1356-1370.	1.9	317
58	Upward revision of global fossil fuel methane emissions based on isotope database. Nature, 2016, 538, 88-91.	13.7	400
59	Role of OH variability in the stalling of the global atmospheric CH ₄ growth rate from 1999 to 2006. Atmospheric Chemistry and Physics, 2016, 16, 7943-7956.	1.9	68
60	Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?. Atmospheric Chemistry and Physics, 2016, 16, 12649-12666.	1.9	27
61	Inverse modeling of GOSAT-retrieved ratios of total column CH ₄ and CO ₂ for 2009 and 2010. Atmospheric Chemistry and Physics, 2016, 16, 5043-5062.	1.9	32
62	Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002-2012). Journal of the Meteorological Society of Japan, 2016, 94, 91-113.	0.7	55
63	International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society, 2016, 97, 1033-1056.	1.7	54
64	A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³ CH ₄ . Science, 2016, 352, 80-84.	6.0	336
65	The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 2016, 531, 225-228.	13.7	402
66	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	3.7	824
67	An intercomparison of inverse models for estimating sources and sinks of CO ₂ using GOSAT measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5253-5266.	1.2	105
68	Methane emissions in East Asia for 2000–2011 estimated using an atmospheric Bayesian inversion. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4352-4369.	1.2	82
69	Variations in global methane sources and sinks during 1910–2010. Atmospheric Chemistry and Physics, 2015, 15, 2595-2612.	1.9	108
70	Top-down estimates of European CH ₄ and N ₂ O emissions based on four different inverse models. Atmospheric Chemistry and Physics, 2015, 15, 715-736.	1.9	92
71	Inverse modelling of CH ₄ emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmospheric Chemistry and Physics, 2015, 15, 113-133.	1.9	126
72	On the ability of a global atmospheric inversion to constrain variations of CO ₂ fluxes over Amazonia. Atmospheric Chemistry and Physics, 2015, 15, 8423-8438.	1.9	8

#	Article	IF	CITATIONS
73	Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion. Biogeosciences, 2015, 12, 5393-5414.	1.3	31
74	Simulation of atmospheric N ₂ O with GEOS-Chem and its adjoint: evaluation of observational constraints. Geoscientific Model Development, 2015, 8, 3179-3198.	1.3	15
75	Seasonal climatology of CO ₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5155-5190.	1.2	153
76	Decadal trends of atmospheric methane in East Asia from 1991 to 2013. Air Quality, Atmosphere and Health, 2015, 8, 293-298.	1.5	15
77	CO&Itsub>2&It/sub>, CO, and CH&Itsub>4&It/sub> measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmospheric Measurement Techniques, 2014, 7,	1.2	199
78	Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions. Global Biogeochemical Cycles, 2014, 28, 146-160.	1.9	37
79	Methane on the Rise—Again. Science, 2014, 343, 493-495.	6.0	457
80	Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO ₂ . Global Biogeochemical Cycles, 2014, 28, 1295-1310.	1.9	33
81	Estimating regional fluxes of CO ₂ and CH ₄ using space-borne observations of XCH ₄ : XCO ₂ . Atmospheric Chemistry and Physics, 2014, 14, 12883-12895.	1.9	35
82	Corrigendum to ``Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland'' published in Atmos. Chem. Phys., 12, 4259–-4277, 2012. Atmospheric Chemistry and Physics, 2014, 14, 3571-3572.	1.9	2
83	A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmospheric Chemistry and Physics, 2014, 14, 3991-4012.	1.9	106
84	TransCom N ₂ O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N ₂ O variability. Atmospheric Chemistry and Physics, 2014, 14, 4349-4368.	1.9	34
85	Global and regional emissions estimates for N ₂ O. Atmospheric Chemistry and Physics, 2014, 14, 4617-4641.	1.9	91
86	On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements. Atmospheric Chemistry and Physics, 2014, 14, 577-592.	1.9	91
87	TransCom N ₂ O model inter-comparison – Part 2: Atmospheric inversion estimates of N ₂ O emissions. Atmospheric Chemistry and Physics, 2014, 14, 6177-6194.	1.9	49
88	Corrigendum to "A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements" published in Atmos. Chem. Phys., 14, 3991–4012, 2014. Atmospheric Chemistry and Physics, 2014, 14, 10961-10962.	1.9	1
89	CarbonTracker-CH ₄ : an assimilation system for estimating emissions of atmospheric methane. Atmospheric Chemistry and Physics, 2014, 14, 8269-8293.	1.9	187
90	A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denverâ€Julesburg Basin. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6836-6852.	1.2	257

#	Article	IF	CITATIONS
91	Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophysical Research Letters, 2013, 40, 4393-4397.	1.5	414
92	Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.	5.4	1,649
93	Reply to comment on "Hydrocarbon emissions characterization in the Colorado Front Range-A pilot study―by Michael A. Levi. Journal of Geophysical Research D: Atmospheres, 2013, 118, 236-242.	1.2	8
94	Constraints on emissions of carbon monoxide, methane, and a suite of hydrocarbons in the Colorado Front Range using observations of ¹⁴ CO ₂ . Atmospheric Chemistry and Physics, 2013, 13, 11101-11120.	1.9	27
95	Anthropogenic emissions of methane in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20018-20022.	3.3	437
96	Atmospheric CH ₄ in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7350-7369.	1.2	226
97	Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements. Atmospheric Chemistry and Physics, 2013, 13, 5697-5713.	1.9	94
98	Tropospheric SF ₆ : Age of air from the Northern Hemisphere midlatitude surface. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,429.	1.2	37
99	Interannual variability in tropospheric nitrous oxide. Geophysical Research Letters, 2013, 40, 4426-4431.	1.5	15
100	Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4974-4990.	1.2	167
101	Sea–air CO ₂ fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences, 2013, 10, 7035-7052.	1.3	47
102	Inverse Modeling of CO ₂ Fluxes Using GOSAT Data and Multi-Year Ground-Based Observations. Scientific Online Letters on the Atmosphere, 2013, 9, 45-50.	0.6	34
103	A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites. Atmospheric Chemistry and Physics, 2012, 12, 11465-11483.	1.9	46
104	Corrigendum to "Source attribution of the changes in atmospheric methane for 2006–2008" published in Atmos. Chem. Phys., 11, 3689–3700, 2011. Atmospheric Chemistry and Physics, 2012, 12, 9381-9382.	1.9	0
105	Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. Atmospheric Chemistry and Physics, 2012, 12, 4259-4277.	1.9	130
106	Regional sources of nitrous oxide over the United States: Seasonal variation and spatial distribution. Journal of Geophysical Research, 2012, 117, .	3.3	52
107	Seasonal variations in N ₂ O emissions from central California. Geophysical Research Letters, 2012, 39, .	1.5	30
108	Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. Journal of Geophysical Research, 2012, 117, .	3.3	50

#	Article	IF	CITATIONS
109	Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. Journal of Geophysical Research, 2011, 116, .	3.3	188
110	Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 2011, 11, 3689-3700.	1.9	252
111	Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide. Atmospheric Chemistry and Physics, 2011, 11, 3713-3730.	1.9	60
112	Inverse modelling of European N ₂ O emissions: assimilating observations from different networks. Atmospheric Chemistry and Physics, 2011, 11, 2381-2398.	1.9	63
113	Non-CO2 greenhouse gases and climate change. Nature, 2011, 476, 43-50.	13.7	934
114	Global atmospheric methane: budget, changes and dangers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2058-2072.	1.6	510
115	Small Interannual Variability of Global Atmospheric Hydroxyl. Science, 2011, 331, 67-69.	6.0	306
116	Trends and Temporal Variations of Major Greenhouse Gases at a Rural Site in Central Europe. , 2011, , 29-47.		3
117	History of atmospheric SF ₆ from 1973 to 2008. Atmospheric Chemistry and Physics, 2010, 10, 10305-10320.	1.9	136
118	Atmospheric constraints on 2004 emissions of methane and nitrous oxide in North America from atmospheric measurements and a receptor-oriented modeling framework. Journal of Integrative Environmental Sciences, 2010, 7, 125-133.	1.0	20
119	Inverse modeling of European CH ₄ emissions 2001–2006. Journal of Geophysical Research, 2010, 115, .	3.3	120
120	Growth Rate, Seasonal, Synoptic, Diurnal Variations and Budget of Methane in the Lower Atmosphere. Journal of the Meteorological Society of Japan, 2009, 87, 635-663.	0.7	74
121	Inverse modeling of global and regional CH ₄ emissions using SCIAMACHY satellite retrievals. Journal of Geophysical Research, 2009, 114, .	3.3	280
122	Decreasing anthropogenic methane emissions in Europe and Siberia inferred from continuous carbon dioxide and methane observations at Alert, Canada. Journal of Geophysical Research, 2009, 114, .	3.3	37
123	Observational constraints on recent increases in the atmospheric CH ₄ burden. Geophysical Research Letters, 2009, 36, .	1.5	499
124	Large tundra methane burst during onset of freezing. Nature, 2008, 456, 628-630.	13.7	283
125	Trends and temporal variations of major greenhouse gases at a rural site in Central Europe. Atmospheric Environment, 2008, 42, 8707-8716.	1.9	50
126	Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. Journal of Geophysical Research, 2008, 113, .	3.3	92

#	Article	IF	CITATIONS
127	Fourâ€dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations. Journal of Geophysical Research, 2008, 113, .	3.3	92
128	Separating contributions from natural and anthropogenic sources in atmospheric methane from the Black Sea region, Romania. Applied Geochemistry, 2008, 23, 2871-2879.	1.4	7
129	Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophysical Research Letters, 2007, 34, .	1.5	115
130	Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. Journal of Geophysical Research, 2007, 112, .	3.3	263
131	Threeâ€dimensional SF ₆ data and tropospheric transport simulations: Signals, modeling accuracy, and implications for inverse modeling. Journal of Geophysical Research, 2007, 112, .	3.3	35
132	Inverse modeling estimates of the global nitrous oxide surface flux from 1998-2001. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	161
133	Tracking climate forcing: The annual greenhouse gas index. Eos, 2006, 87, 509.	0.1	27
134	Atmospheric constraints on global emissions of methane from plants. Geophysical Research Letters, 2006, 33, .	1.5	102
135	Impact of meteorology and emissions on methane trends, 1990–2004. Geophysical Research Letters, 2006, 33, .	1.5	67
136	Mauna Loa volcano is not a methane source: Implications for Mars. Geophysical Research Letters, 2006, 33, .	1.5	20
137	The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 614-619.	0.8	132
138	Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 2006, 443, 439-443.	13.7	935
139	New Directions: Watching over tropospheric hydroxyl (OH)â ⁻ †. Atmospheric Environment, 2006, 40, 5741-5743.	1.9	24
140	Inverse modelling of national and European CH ₄ emissions using the atmospheric zoom model TM5. Atmospheric Chemistry and Physics, 2005, 5, 2431-2460.	1.9	143
141	Conversion of NOAA atmospheric dry air CH4mole fractions to a gravimetrically prepared standard scale. Journal of Geophysical Research, 2005, 110, .	3.3	325
142	Toward regional-scale modeling using the two-way nested global model TM5: Characterization of transport using SF6. Journal of Geophysical Research, 2004, 109, .	3.3	73
143	Determination of emissions from observations of atmospheric compounds. Advances in Global Change Research, 2004, , 427-476.	1.6	1
144	Atmospheric methane levels off: Temporary pause or a new steady-state?. Geophysical Research Letters, 2003, 30, .	1.5	379

#	Article	IF	CITATIONS
145	Development of analytical methods and measurements of13C/12C in atmospheric CH4from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research, 2002, 107, ACH 11-1.	3.3	115
146	In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences. Journal of Geophysical Research, 2002, 107, ACH 20-1.	3.3	135
147	Measurements of an anomalous global methane increase during 1998. Geophysical Research Letters, 2001, 28, 499-502.	1.5	143
148	NOAA/CSIRO Flask Air Intercomparison Experiment: A strategy for directly assessing consistency among atmospheric measurements made by independent laboratories. Journal of Geophysical Research, 2001, 106, 20445-20464.	3.3	91
149	An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986-1997. Journal of Geophysical Research, 2000, 105, 17267-17278.	3.3	30
150	The modeling of tropospheric methane: How well can point measurements be reproduced by a global model?. Journal of Geophysical Research, 2000, 105, 8981-9002.	3.3	76
151	The isotopic composition of atmospheric methane. Global Biogeochemical Cycles, 1999, 13, 445-461.	1.9	282
152	Continuing decline in the growth rate of the atmospheric methane burden. Nature, 1998, 393, 447-450.	13.7	384
153	An investigation into the source of the springtime tropospheric ozone maximum at Mauna Loa Observatory. Geophysical Research Letters, 1998, 25, 1895-1898.	1.5	28
154	Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere. Geophysical Research Letters, 1996, 23, 347-350.	1.5	158
155	Changes in CH4and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux. Geophysical Research Letters, 1996, 23, 2761-2764.	1.5	108
156	A comparison of aircraft and ground-based measurements at Mauna Loa Observatory, Hawaii, during GTE PEM-West and MLOPEX 2. Journal of Geophysical Research, 1996, 101, 14599-14612.	3.3	10
157	Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 ?m. Applied Physics B: Lasers and Optics, 1995, 61, 553-558.	1.1	33
158	A determination of the CH4, NO x and CO2 emissions from the Prudhoe Bay, Alaska oil development. Journal of Atmospheric Chemistry, 1995, 20, 213-227.	1.4	26
159	Atmospheric methane at Mauna Loa and Barrow observatories: Presentation and analysis of in situ measurements. Journal of Geophysical Research, 1995, 100, 23103.	3.3	76
160	A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophysical Research Letters, 1994, 21, 45-48.	1.5	203
161	Correction to "A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992―by E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, L. P. Steele, and E. C. Nisbet. Geophysical Research Letters, 1994, 21, 507-507.	1.5	9
162	Reply to "Comments on â€~A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992'― Geophysical Research Letters, 1994, 21, 2447-2448.	1.5	8

#	Article	IF	CITATIONS
163	The growth rate and distribution of atmospheric methane. Journal of Geophysical Research, 1994, 99, 17021.	3.3	477
164	AMS Dating of Alluvial Sediments on the Southern Tablelands of New South Wales, Australia. Radiocarbon, 1992, 34, 29-36.	0.8	33
165	Variations in atmospheric methane at Mauna Loa Observatory related to longâ€range transport. Journal of Geophysical Research, 1992, 97, 6003-6010.	3.3	62
166	Laboratory measurements of direct ozone loss on ice and dopedâ€ice surfaces. Geophysical Research Letters, 1992, 19, 41-44.	1.5	21
167	Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature, 1992, 358, 313-316.	13.7	295
168	AMS radiocarbon dating in the study of arid environments: Examples from Lake Eyre, South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 84, 333-338.	1.0	36
169	Methane and carbon monoxide emissions from asphalt pavement: Measurements and estimates of their importance to global budgets. Journal of Geophysical Research, 1990, 95, 14007-14014.	3.3	8
170	Studies of nitrate radical reactions with some atmospheric organic compounds at low pressures. The Journal of Physical Chemistry, 1989, 93, 1091-1096.	2.9	95
171	Laboratory studies of nitrate radical reactions with some atmospheric sulfur compounds. The Journal of Physical Chemistry, 1988, 92, 1188-1193.	2.9	53
172	Kinetics of the nitric oxide-nitrate radical gas-phase reaction NO + NO3 .fwdarw. 2NO2. The Journal of Physical Chemistry, 1986, 90, 2491-2496.	2.9	26