
Stefano Amente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7474164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	8-oxodG accumulation within super-enhancers marks fragile CTCF-mediated chromatin loops. Nucleic Acids Research, 2022, 50, 3292-3306.	6.5	11
2	Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair, 2021, 97, 103027.	1.3	32
3	Genome-wide mapping of genomic DNA damage: methods and implications. Cellular and Molecular Life Sciences, 2021, 78, 6745-6762.	2.4	15
4	ELIXIR-IT HPC@CINECA: high performance computing resources for the bioinformatics community. BMC Bioinformatics, 2020, 21, 352.	1.2	25
5	The genomic landscape of 8-oxodG reveals enrichment at specific inherently fragile promoters. Nucleic Acids Research, 2020, 48, 4309-4324.	6.5	36
6	Expanding the Role of the Histone Lysine-Specific Demethylase LSD1 in Cancer. Cancers, 2019, 11, 324.	1.7	100
7	Inhibition of lysine-specific demethylase LSD1 induces senescence in Glioblastoma cells through a HIF-1α-dependent pathway. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 535-546.	0.9	17
8	Blastic plasmacytoid dendritic cell neoplasm: genomics mark epigenetic dysregulation as a primary therapeutic target. Haematologica, 2019, 104, 729-737.	1.7	58
9	Genome-wide mapping of 8-oxo-7,8-dihydro-2′-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA replication origins within transcribed long genes of mammalian cells. Nucleic Acids Research, 2019, 47, 221-236.	6.5	94
10	Mitochondrial AKAP1 supports mTOR pathway and tumor growth. Cell Death and Disease, 2017, 8, e2842-e2842.	2.7	45
11	Lysine-specific demethylase LSD1 regulates autophagy in neuroblastoma through SESN2-dependent pathway. Oncogene, 2017, 36, 6701-6711.	2.6	72
12	LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene. Oncotarget, 2017, 8, 3854-3869.	0.8	37
13	Cell cycle-dependent resolution of DNA double-strand breaks. Oncotarget, 2016, 7, 4949-4960.	0.8	20
14	MYC impairs resolution of site-specific DNA double-strand breaks repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 774, 6-13.	0.4	10
15	Lysine-specific demethylase (LSD1/KDM1A) and MYCN cooperatively repress tumor suppressor genes in neuroblastoma. Oncotarget, 2015, 6, 14572-14583.	0.8	47
16	The histone LSD1 demethylase in stemness and cancer transcription programs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 981-986.	0.9	171
17	Cu–Zn superoxide dismutase activates muscarinic acetylcholine M1 receptor pathway in neuroblastoma cells. Molecular and Cellular Neurosciences, 2013, 52, 31-37.	1.0	28
18	Sequence-specific double strand breaks trigger P-TEFb-dependent Rpb1-CTD hyperphosphorylation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 749, 21-27.	0.4	10

STEFANO AMENTE

#	Article	IF	CITATIONS
19	Identification of Novel AR-Targeted MicroRNAs Mediating Androgen Signalling through Critical Pathways to Regulate Cell Viability in Prostate Cancer. PLoS ONE, 2013, 8, e56592.	1.1	100
20	Reactive Oxygen Species Regulate the Levels of Dual Oxidase (Duox1-2) in Human Neuroblastoma Cells. PLoS ONE, 2012, 7, e34405.	1.1	32
21	SUMO-activating SAE1 transcription is positively regulated by Myc. American Journal of Cancer Research, 2012, 2, 330-4.	1.4	22
22	Myc and PI3K/AKT signaling cooperatively repress FOXO3a-dependent PUMA and GADD45a gene expression. Nucleic Acids Research, 2011, 39, 9498-9507.	6.5	71
23	Epigenetic reprogramming of Myc target genes. American Journal of Cancer Research, 2011, 1, 413-418.	1.4	11
24	LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription. Oncogene, 2010, 29, 3691-3702.	2.6	154
25	Caffeine Prevents Transcription Inhibition and P-TEFb/7SK Dissociation Following UV-Induced DNA Damage. PLoS ONE, 2010, 5, e11245.	1.1	11
26	Reactive Oxygen Species, Ki-Ras, and Mitochondrial Superoxide Dismutase Cooperate in Nerve Growth Factor-induced Differentiation of PC12 Cells. Journal of Biological Chemistry, 2010, 285, 24141-24153.	1.6	29
27	DNA oxidation drives Myc mediated transcription. Cell Cycle, 2010, 9, 3074-3076.	1.3	34
28	Camptothecin releases P-TEFb from the inactive 7SK snRNP complex. Cell Cycle, 2009, 8, 1249-1255.	1.3	20
29	p14 ^{ARF} is capable of promoting HIV-1 Tat degradation. Cell Cycle, 2008, 7, 1433-1439.	1.3	14
30	P-TEFb is a Crucial Co-Factor for Myc Transactivation. Cell Cycle, 2007, 6, 2031-2037.	1.3	71
31	p14ARFinteracts with N-Myc and inhibits its transcriptional activity. FEBS Letters, 2007, 581, 821-825.	1.3	13
32	p14ARF directly interacts with Myc through the Myc BoxII domain. Cancer Biology and Therapy, 2006, 5, 287-291.	1.5	15
33	Identification of proteins interacting with the RNAPII FCP1 phosphatase: FCP1 forms a complex with arginine methyltransferase PRMT5 and it is a substrate for PRMT5-mediated methylation. FEBS Letters, 2005, 579, 683-689.	1.3	62
34	The FCP1 phosphatase interacts with RNA polymerase II and with MEP50 a component of the methylosome complex involved in the assembly of snRNP. Nucleic Acids Research, 2003, 31, 999-1005.	6.5	20