
## Elizabeth J Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/747362/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The T-box transcription factor Eomesodermin governs haemogenic competence of yolk sac<br>mesodermal progenitors. Nature Cell Biology, 2021, 23, 61-74.                             | 4.6  | 10        |
| 2  | The transcriptional repressor Blimp1/PRDM1 regulates the maternal decidual response in mice. Nature Communications, 2020, 11, 2782.                                                | 5.8  | 17        |
| 3  | CytoCensus, mapping cell identity and division in tissues and organs using machine learning. ELife, 2020, 9, .                                                                     | 2.8  | 16        |
| 4  | Common and distinct transcriptional signatures of mammalian embryonic lethality. Nature<br>Communications, 2019, 10, 2792.                                                         | 5.8  | 16        |
| 5  | Genetic dissection of Nodal and Bmp signalling requirements during primordial germ cell development in mouse. Nature Communications, 2019, 10, 1089.                               | 5.8  | 36        |
| 6  | Blimp-1/PRDM1 is a critical regulator of Type III Interferon responses in mammary epithelial cells.<br>Scientific Reports, 2018, 8, 237.                                           | 1.6  | 14        |
| 7  | Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature, 2018, 555, 463-468.                                                                           | 13.7 | 287       |
| 8  | Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic<br>Cell Identities during Lineage Priming. Cell Reports, 2018, 24, 1977-1985.e7. | 2.9  | 31        |
| 9  | Functional characterisation of cis-regulatory elements governing dynamic <i>Eomes</i> expression in the early mouse embryo. Development (Cambridge), 2017, 144, 1249-1260.         | 1.2  | 32        |
| 10 | Mapping the chromatin landscape and Blimp1 transcriptional targets that regulate trophoblast differentiation. Scientific Reports, 2017, 7, 6793.                                   | 1.6  | 15        |
| 11 | Long-lived unipotent Blimp1-positive luminal stem cells drive mammary gland organogenesis throughout adult life. Nature Communications, 2017, 8, 1714.                             | 5.8  | 27        |
| 12 | The transcriptional repressor Blimp1 is expressed in rare luminal progenitors and is essential for mammary gland development. Development (Cambridge), 2016, 143, 1663-1673.       | 1.2  | 15        |
| 13 | Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy. Nature Communications, 2016, 7, 11414.                | 5.8  | 86        |
| 14 | Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open<br>Biology, 2016, 6, 150200.                                                        | 1.5  | 15        |
| 15 | Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome<br>Open Research, 2016, 1, 1.                                                        | 0.9  | 29        |
| 16 | Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal<br>Intestinal Maturation. PLoS Genetics, 2015, 11, e1005375.                          | 1.5  | 30        |
| 17 | Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain.<br>Cerebral Cortex, 2015, 25, 3290-3302.                                            | 1.6  | 144       |
| 18 | Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development. Genes and Development, 2015, 29, 2108-2122.                      | 2.7  | 83        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Seminars in Cell and<br>Developmental Biology, 2014, 32, 73-79.                                                                                      | 2.3  | 104       |
| 20 | Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice. DMM Disease Models and Mechanisms, 2013, 6, 562-6.                                                | 1.2  | 65        |
| 21 | The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but<br>Plays a Nonessential Role in the Developing Mouse Embryo. Molecular and Cellular Biology, 2013, 33,<br>3936-3950. | 1.1  | 27        |
| 22 | The T-box transcription factor Eomesodermin is essential for AVE induction in the mouse embryo.<br>Genes and Development, 2013, 27, 997-1002.                                                                          | 2.7  | 64        |
| 23 | Technical Advance: Fluorescent reporter reveals insights into eomesodermin biology in cytotoxic<br>lymphocytes. Journal of Leukocyte Biology, 2013, 93, 307-315.                                                       | 1.5  | 28        |
| 24 | Blimp1/Prdm1 governs terminal differentiation of endovascular trophoblast giant cells and defines multipotent progenitors in the developing placenta. Genes and Development, 2012, 26, 2063-2074.                      | 2.7  | 63        |
| 25 | Alternative Splicing Regulates Prdm1/Blimp-1 DNA Binding Activities and Corepressor Interactions.<br>Molecular and Cellular Biology, 2012, 32, 3403-3413.                                                              | 1.1  | 17        |
| 26 | Progenitor and Terminal Subsets of CD8 <sup>+</sup> T Cells Cooperate to Contain Chronic Viral<br>Infection. Science, 2012, 338, 1220-1225.                                                                            | 6.0  | 760       |
| 27 | The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nature Cell Biology, 2011, 13, 1084-1091.                                                    | 4.6  | 210       |
| 28 | The fibronectin leucine-rich repeat transmembrane protein Flrt2 is required in the epicardium to promote heart morphogenesis. Development (Cambridge), 2011, 138, 1297-1308.                                           | 1.2  | 47        |
| 29 | The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10585-10590.       | 3.3  | 120       |
| 30 | Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes and Development, 2011, 25, 238-250.                                                                                        | 2.7  | 303       |
| 31 | Blimp-1/Prdm1 Alternative Promoter Usage during Mouse Development and Plasma Cell Differentiation.<br>Molecular and Cellular Biology, 2009, 29, 5813-5827.                                                             | 1.1  | 57        |
| 32 | Generation and analysis of a mouse line harboring GFP in the Eomes/Tbr2 locus. Genesis, 2009, 47, 775-781.                                                                                                             | 0.8  | 63        |
| 33 | Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC Developmental Biology, 2009, 9, 54.                                              | 2.1  | 46        |
| 34 | Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nature<br>Reviews Molecular Cell Biology, 2009, 10, 91-103.                                                                | 16.1 | 690       |
| 35 | An expanding job description for Blimp-1/PRDM1. Current Opinion in Genetics and Development, 2009, 19, 379-385.                                                                                                        | 1.5  | 101       |
| 36 | One PRDM is not enough for germ cell development. Nature Genetics, 2008, 40, 934-935.                                                                                                                                  | 9.4  | 6         |

## ELIZABETH J ROBERTSON

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3. Developmental Biology, 2008, 318, 184-193.               | 0.9 | 53        |
| 38 | Pivotal roles for eomesodermin during axis formation,epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development (Cambridge), 2008, 135, 501-511.                                         | 1.2 | 220       |
| 39 | BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes and Development, 2008, 22, 3037-3049.                                                | 2.7 | 63        |
| 40 | The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes and Development, 2008, 22, 2479-2484.                                                                      | 2.7 | 289       |
| 41 | Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development (Cambridge), 2007, 134, 4335-4345.                                                  | 1.2 | 119       |
| 42 | Mice develop normally in the absence of Smad4 nucleocytoplasmic shuttling. Biochemical Journal, 2007, 404, 235-245.                                                                                                    | 1.7 | 16        |
| 43 | The Nodal Precursor Acting via Activin Receptors Induces Mesoderm by Maintaining a Source of Its Convertases and BMP4. Developmental Cell, 2006, 11, 313-323.                                                          | 3.1 | 279       |
| 44 | Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Developmental Biology,<br>2006, 296, 104-118.                                                                                               | 0.9 | 139       |
| 45 | Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile.<br>Genes and Development, 2005, 19, 152-163.                                                                       | 2.7 | 104       |
| 46 | The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development (Cambridge), 2005, 132, 1315-1325. | 1.2 | 307       |
| 47 | Making heads and tails of the early mouse embryo. Harvey Lectures, 2005, 101, 59-73.                                                                                                                                   | 0.2 | 2         |
| 48 | Differential requirements for Smad4 in TGFβ-dependent patterning of the early mouse embryo.<br>Development (Cambridge), 2004, 131, 3501-3512.                                                                          | 1.2 | 199       |
| 49 | Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo. Development (Cambridge), 2004, 131, 1717-1728.                                                             | 1.2 | 162       |
| 50 | Multiple roles for Nodal in the epiblast of the mouse embryo in the establishment of anterior-posterior patterning. Developmental Biology, 2004, 273, 149-159.                                                         | 0.9 | 84        |
| 51 | Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes and Development, 2003, 17, 1646-1662.                                                                                       | 2.7 | 287       |
| 52 | Control of early anterior-posterior patterning in the mouse embryo by TGF-β signalling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1351-1358.                                  | 1.8 | 57        |
| 53 | Nodal activity in the node governs left-right asymmetry. Genes and Development, 2002, 16, 2339-2344.                                                                                                                   | 2.7 | 253       |
| 54 | Nodal Antagonists in the Anterior Visceral Endoderm Prevent the Formation of Multiple Primitive<br>Streaks. Developmental Cell, 2002, 3, 745-756.                                                                      | 3.1 | 330       |

ELIZABETH J ROBERTSON

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development (Cambridge), 2002, 129, 3455-3468.                                              | 1.2  | 198       |
| 56 | The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development (Cambridge), 2002, 129, 3455-68.                                                | 1.2  | 78        |
| 57 | From fertilization to gastrulation: axis formation in the mouse embryo. Current Opinion in Genetics and Development, 2001, 11, 384-392.                                                          | 1.5  | 212       |
| 58 | Nodal signalling in the epiblast patterns the early mouse embryo. Nature, 2001, 411, 965-969.                                                                                                    | 13.7 | 489       |
| 59 | Rosa Beddington (1956–2001). Nature, 2001, 412, 138-138.                                                                                                                                         | 13.7 | 0         |
| 60 | Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development (Cambridge), 2001, 128, 3609-3621.                                           | 1.2  | 331       |
| 61 | Regulation of Bone Morphogenetic Protein Activity by Pro Domains and Proprotein Convertases.<br>Journal of Cell Biology, 1999, 144, 139-149.                                                     | 2.3  | 278       |
| 62 | Mouse Lefty2 and Zebrafish Antivin Are Feedback Inhibitors of Nodal Signaling during Vertebrate<br>Gastrulation. Molecular Cell, 1999, 4, 287-298.                                               | 4.5  | 348       |
| 63 | Pitx2 determines left–right asymmetry of internal organs in vertebrates. Nature, 1998, 394, 545-551.                                                                                             | 13.7 | 492       |
| 64 | Smad2 Signaling in Extraembryonic Tissues Determines Anterior-Posterior Polarity of the Early Mouse<br>Embryo. Cell, 1998, 92, 797-808.                                                          | 13.5 | 439       |
| 65 | Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects inBMP7 deficient embryos. Developmental Dynamics, 1997, 208, 349-362. | 0.8  | 418       |
| 66 | Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. , 1997, 208, 349.                          |      | 2         |
| 67 | Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature, 1996, 381, 155-158.                                                                             | 13.7 | 542       |
| 68 | A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into<br>mice. Nature, 1987, 326, 295-298.                                                               | 13.7 | 509       |
| 69 | Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector.<br>Nature, 1986, 323, 445-448.                                                               | 13.7 | 744       |
| 70 | Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309, 255-256.                                                                                     | 13.7 | 1,401     |
| 71 | Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome<br>Open Research, 0, 1, 1.                                                                         | 0.9  | 16        |