Elisabeth Hansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7473339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews Neuroscience, 2006, 7, 41-53.	10.2	4,411
2	Glial neuronal signaling in the central nervous system. FASEB Journal, 2003, 17, 341-348.	0.5	288
3	Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-α. Glia, 2005, 51, 111-120.	4.9	142
4	Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca ²⁺ signaling. American Journal of Physiology - Cell Physiology, 1999, 277, C616-C627.	4.6	69
5	Acute ethanol exposure induces [Ca2+]itransients, cell swelling and transformation of actin cytoskeleton in astroglial primary cultures. Journal of Neurochemistry, 2001, 76, 472-479.	3.9	66
6	Naloxone and Ouabain in Ultralow Concentrations Restore Na+/K+-ATPase and Cytoskeleton in Lipopolysaccharide-treated Astrocytes. Journal of Biological Chemistry, 2011, 286, 31586-31597.	3.4	62
7	Long-term pain, neuroinflammation and glial activation. Scandinavian Journal of Pain, 2010, 1, 67-72.	1.3	45
8	Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes. American Journal of Physiology - Cell Physiology, 2001, 281, C1495-C1503.	4.6	41
9	Regulation of the glial glutamate transporter GLTâ€1 by glutamate and δâ€opioid receptor stimulation. FEBS Letters, 1998, 425, 453-459.	2.8	37
10	Inflammatory activation enhances NMDA-triggered Ca2+ signalling and IL-1Î ² secretion in primary cultures of rat astrocytes. Brain Research, 2012, 1473, 1-8.	2.2	35
11	Altered Neuronal–Glial Signaling in Glutamatergic Transmission as a Unifying Mechanism in Chronic Pain and Mental Fatigue. Neurochemical Research, 2004, 29, 989-996.	3.3	33
12	Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. Journal of Inflammation, 2015, 12, 44.	3.4	29
13	Intracellular sulfatide expression in a subpopulation of astrocytes in primary cultures. , 1998, 52, 559-568.		24
14	Actin Filament Reorganization in Astrocyte Networks is a Key Functional Step in Neuroinflammation Resulting in Persistent Pain: Novel Findings on Network Restoration. Neurochemical Research, 2015, 40, 372-379.	3.3	24
15	Ultralow concentrations of bupivacaine exert antiâ€inflammatory effects on inflammationâ€reactive astrocytes. European Journal of Neuroscience, 2013, 38, 3669-3678.	2.6	22
16	Anti-inflammatory effects induced by pharmaceutical substances on inflammatory active brain astrocytes—promising treatment of neuroinflammation. Journal of Neuroinflammation, 2018, 15, 321.	7.2	21
17	The Importance and Control of Low-Grade Inflammation Due to Damage of Cellular Barrier Systems That May Lead to Systemic Inflammation. Frontiers in Neurology, 2019, 10, 533.	2.4	21
18	Differential expression of delta opioid receptors and mRNA in proliferating astrocytes during the cell cycle. Journal of Neuroscience Research, 2000, 61, 371-375.	2.9	19

Elisabeth Hansson

#	Article	IF	CITATIONS
19	Sildenafil (Viagra®) prevents and restores LPS-induced inflammation in astrocytes. Neuroscience Letters, 2016, 630, 59-65.	2.1	19
20	Delta-opioid receptor immunoreactivity on astrocytes is upregulated during mitosis. Glia, 1999, 25, 370-378.	4.9	18
21	Primary Cultures From Cerebral Cortex and Hippocampus Enriched in Glutamatergic and GABAergic Neurons. Neurochemical Research, 2010, 35, 1733-1742.	3.3	18
22	Therapeutic innovation: Inflammatory-reactive astrocytes as targets of inflammation. IBRO Reports, 2016, 1, 1-9.	0.3	17
23	Lactate Contributes to Ammonia-Mediated Astroglial Dysfunction During Hyperammonemia. Neurochemical Research, 2009, 34, 556-565.	3.3	16
24	Ultralow Dose of Naloxone as an Adjuvant to Intrathecal Morphine Infusion Improves Perceived Quality of Sleep but Fails to Alter Persistent Pain. Clinical Journal of Pain, 2015, 31, 968-975.	1.9	16
25	Elevated Glucose Levels Preserve Glucose Uptake, Hyaluronan Production, and Low Glutamate Release Following Interleukin-1β Stimulation of Differentiated Chondrocytes. Cartilage, 2019, 10, 491-503.	2.7	15
26	Neuropharmacological effects of Phoneutria nigriventer venom on astrocytes. Neurochemistry International, 2016, 96, 13-23.	3.8	13
27	PACAP attenuates 5-HT, histamine, and ATP-evoked Ca2+ transients in astrocytes. NeuroReport, 2009, 20, 957-962.	1.2	12
28	Inflammatory activation of human cardiac fibroblasts leads to altered calcium signaling, decreased connexin 43 expression and increased glutamate secretion. Heliyon, 2017, 3, e00406.	3.2	12
29	Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication. Heliyon, 2018, 4, e00525.	3.2	9
30	Low-grade inflammation causes gap junction-coupled cell dysfunction throughout the body, which can lead to the spread of systemic inflammation. Scandinavian Journal of Pain, 2019, 19, 639-649.	1.3	6
31	Serotonin-evoked cytosolic Ca2+ release and opioid receptor expression are upregulated in articular cartilage chondrocytes from osteoarthritic joints in horses. Veterinary and Animal Science, 2019, 8, 100078.	1.5	5
32	Neuroinflammation and glial cell activation in pathogenesis of chronic pain. Scandinavian Journal of Pain, 2015, 6, 1-2.	1.3	4
33	Anti-inflammatory effects induced by ultralow concentrations of bupivacaine in combination with ultralow concentrations of sildenafil (Viagra) and vitamin D3 on inflammatory reactive brain astrocytes. PLoS ONE, 2019, 14, e0223648.	2.5	3
34	Bupivacaine in combination with sildenafil (Viagra) and vitamin D3 have anti-inflammatory effects in osteoarthritic chondrocytes. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100066.	3.6	2
35	Coupled cell networks of astrocytes and chondrocytes are target cells of inflammation. Scandinavian Journal of Pain, 2016, 12, 120-121.	1.3	1
36	Plasma pro-inflammatory markers in chronic neuropathic pain: Why elevated levels may be relevant for diagnosis and treatment of patients suffering chronic pain. Scandinavian Journal of Pain, 2016, 10, 52-53.	1.3	0

#	Article	IF	CITATIONS
37	Cognitive Impairment During Recovery from Whiplash Injury—Underlying Mechanisms Focusing on Astroglial Dysfunction in Clutamatergic Neurotransmission. Journal of Whiplash and Related Disorders, 2003, 2, 17-29.	0.2	0