Javier Hernandez-Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7473210/publications.pdf

Version: 2024-02-01

394286 414303 53 1,166 19 32 g-index citations h-index papers 53 53 53 1046 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Energy landscapes and dynamics of polycyclic aromatic hydrocarbon clusters from coarse-grained models. Frontiers of Nanoscience, 2022, , 19-41.	0.3	O
2	Ca+ Ions Solvated in Helium Clusters. Molecules, 2021, 26, 3642.	1.7	6
3	Growth of rare gases on coronene. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	5
4	Rare gas-naphthalene interaction: Intermolecular potentials and clusters' structures. Chemical Physics Letters, 2021, 773, 138565.	1.2	1
5	Minimal Design Principles for Icosahedral Virus Capsids. ACS Nano, 2021, 15, 14873-14884.	7.3	8
6	A minimal coarse-grained model for the low-frequency normal mode analysis of icosahedral viral capsids. Soft Matter, 2020, 16, 3443-3455.	1.2	4
7	Snowball formation for Cs ⁺ solvation in molecular hydrogen and deuterium. Physical Chemistry Chemical Physics, 2019, 21, 15662-15668.	1.3	12
8	The Structure of Adamantane Clusters: Atomistic vs. Coarse-Grained Predictions From Global Optimization. Frontiers in Chemistry, 2019, 7, 573.	1.8	3
9	Kinetics of empty viral capsid assembly in a minimal model. Soft Matter, 2019, 15, 7166-7172.	1.2	11
10	A combined experimental and theoretical investigation of Cs+ ions solvated in He <i>N</i> clusters. Journal of Chemical Physics, 2019, 150, 154304.	1.2	17
11	Coarse-grained modeling of the nucleation of polycyclic aromatic hydrocarbons into soot precursors. Physical Chemistry Chemical Physics, 2019, 21, 5123-5132.	1.3	10
12	Temperature- and field-induced structural transitions in magnetic colloidal clusters. Physical Review E, 2018, 97, 022601.	0.8	5
13	Lithium ions solvated in helium. Physical Chemistry Chemical Physics, 2018, 20, 25569-25576.	1.3	25
14	Comparative investigation of pure and mixed rare gas atoms on coronene molecules. Journal of Chemical Physics, 2017, 146, 034302.	1.2	16
15	Dynamics and thermodynamics of the coronene octamer described by coarse-grained potentials. Physical Chemistry Chemical Physics, 2017, 19, 1884-1895.	1.3	17
16	Adsorption of molecular hydrogen on coronene with a new potential energy surface. Physical Chemistry Chemical Physics, 2017, 19, 26358-26368.	1.3	22
17	Coarse-graining the structure of polycyclic aromatic hydrocarbons clusters. Physical Chemistry Chemical Physics, 2016, 18, 13736-13740.	1.3	23
18	Self-assembly of colloidal magnetic particles: energy landscapes and structural transitions. Physical Chemistry Chemical Physics, 2016, 18, 26579-26585.	1.3	17

#	Article	IF	Citations
19	Examination of the Feynman–Hibbs Approach in the Study of Ne _{<i>N</i>} -Coronene Clusters at Low Temperatures. Journal of Physical Chemistry A, 2016, 120, 5370-5379.	1.1	16
20	Coronene molecules in helium clusters: Quantum and classical studies of energies and configurations. Journal of Chemical Physics, 2015, 143, 224306.	1.2	28
21	Applicability of Quantum Thermal Baths to Complex Many-Body Systems with Various Degrees of Anharmonicity. Journal of Chemical Theory and Computation, 2015, 11, 861-870.	2.3	12
22	The effect of dispersion damping functions on the structure of water clusters. Chemical Physics, 2014, 444, 23-29.	0.9	17
23	A minimal representation of the self-assembly of virus capsids. Soft Matter, 2014, 10, 3560.	1.2	14
24	Confinement Effects on Water Clusters Inside Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 17019-17028.	1.5	48
25	Optimal covering of C60 fullerene by rare gases. Journal of Chemical Physics, 2012, 137, 074306.	1.2	22
26	Water clusters confined in icosahedral fullerene cavities. Chemical Physics, 2012, 399, 240-244.	0.9	17
27	Physical properties of small water clusters in low and moderate electric fields. Journal of Chemical Physics, 2011, 135, 124303.	1.2	19
28	Modeling Water Clusters on Cationic Carbonaceous Seeds. Journal of Physical Chemistry A, 2010, 114, 7267-7274.	1.1	31
29	Energy landscapes for shells assembled from pentagonal and hexagonal pyramids. Physical Chemistry Chemical Physics, 2009, 11, 2098.	1.3	44
30	Global Potential Energy Minima of ($H < sub > 2 < / sub > O$) $< sub > < i > n < / i > < / sub > Clusters on Graphite: A Comparative Study of the TIP < i > N < / i > P (< i > N < / i > = 3, 4, 5) Family. Journal of Physical Chemistry C, 2008, 112, 16497-16504.$	1.5	9
31	Microcanonical versus Canonical Analysis of Protein Folding. Physical Review Letters, 2008, 100, 258104.	2.9	33
32	Global Potential Energy Minima of (H ₂ O) <i>_n</i> Clusters on Graphite. Journal of Physical Chemistry C, 2007, 111, 14862-14869.	1.5	33
33	Global Potential Energy Minima of C60(H2O)n Clusters. Journal of Physical Chemistry B, 2006, 110, 13357-13362.	1.2	55
34	Thermodynamics of water octamer in a uniform electric field. Journal of Chemical Physics, 2006, 125, 224302.	1.2	30
35	Global minima of (C60)nCa2+, (C60)nFâ^' and (C60)nlâ^' clusters. Chemical Physics Letters, 2005, 410, 404-409.	1.2	15
36	Global minima and energetics of Li+(H2O)n and Ca2+(H2O)n clusters for na $^{\circ}$ 20. Chemical Physics Letters, 2005, 412, 23-28.	1.2	53

#	Article	IF	Citations
37	Global minima for water clusters (H2O)n, nâ $@1/221$, described by a five-site empirical potential. Chemical Physics Letters, 2005, 415, 302-307.	1.2	148
38	Lowest-energy structures of (C[sub 60])[sub n]X (X=Li[sup +],Na[sup +],K[sup +],Cl[sup â^']) and (C[sub) Tj ET	Qq <u>Q,0</u> 0 r ₂	gBT/Overlock
39	Supercooled Lennard-Jones liquids and glasses: a kinetic Monte Carlo approach. Journal of Non-Crystalline Solids, 2004, 336, 218-222.	1.5	14
40	Global minima for rare gas clusters containing one alkali metal ion. Journal of Chemical Physics, 2003, 119, 7800-7804.	1,2	51
41	Density effects in a bulk binary Lennard-Jones system. Physical Review B, 2003, 68, .	1.1	6
42	Crystals of binary Lennard-Jones solids. Physical Review B, 2001, 64, .	1.1	77
43	Low-temperature dynamics and spectroscopy in exohedral rare-gas C60 fullerene complexes. Journal of Chemical Physics, 2001, 114, 5156-5163.	1.2	12
44	Polarization effects in C60 fullerene complexes of alkali ions. Journal of Chemical Physics, 1998, 109, 3573-3579.	1.2	17
45	Rotational dynamics of endohedral C60 fullerene complexes. Journal of Physics and Chemistry of Solids, 1997, 58, 1689-1696.	1.9	15
46	Free and hindered rotations in endohedral C60 fullerene complexes. International Journal of Quantum Chemistry, 1997, 65, 655-663.	1.0	13
47	Caging effects in the lowâ€temperature rotational spectra of endohedral diatomic molecules at C60 fullerene. Journal of Chemical Physics, 1996, 104, 5754-5760.	1.2	6
48	Raman rotational spectra of endohedral C60 fullerene complexes. Journal of Chemical Physics, 1996, 105, 4482-4487.	1.2	8
49	Rotational spectra for offâ€center endohedral atoms at C60 fullerene. Journal of Chemical Physics, 1996, 104, 1179-1186.	1.2	31
50	On polarization effects in endohedral fullerene complexes. Chemical Physics Letters, 1995, 235, 160-162.	1.2	15
51	On the rotational spectra of endohedral atoms at fullerenes: the off-centre case. Chemical Physics Letters, 1995, 237, 115-122.	1.2	11
52	On polarization effects in endohedral fullerene complexes (Chem. Phys. Letters 235 (1995) 160). Chemical Physics Letters, 1995, 243, 587-588.	1.2	9
53	A semi-empirical analytical potential for diatomic molecules at spherical fullerenes. Chemical Physics Letters, 1994, 222, 88-94.	1.2	14